Теории иммунитета. Разработка теорий иммунитета. Фагоцитарная теория иммунитета. Мечников. Фагоцитоз. Фагоцитарная теория И.И.Мечникова Теорию фагоцитоза разработал

В течение второй половины XIX века врачами и биологами того времени активно исследовалась роль патогенных микроорганизмов в процессе развития инфекционных болезней, а также возможность формировать искусственную невосприимчивость к ним. Эти исследования привели к изучению фактов о естественной защите организма от инфекций. Пастер предложил научному сообществу идею так называемой "исчерпанной силы". Согласно этой теории, вирусная невосприимчивость является таким состоянием, при котором человеческий организм не является благотворной питательной средой для инфекционных агентов. Однако эта идея не могла объяснить целый ряд практических наблюдений.

Мечников: клеточная теория иммунитета

Эта теория появилась в 1883 году. Создатель клеточной теории иммунитета опирался на учение Чарльза Дарвина и основывался на изучении процессов пищеварения у животных, которые располагаются на различных ступенях эволюционного развития. Автор новоявленной теории обнаружил некое сходство во внутриклеточном переваривании веществ у клеток энтодермы, амеб, тканевых макрофагов и моноцитов. Собственно, иммунитета создал известнейший русский биолог Илья Мечников. Его работы в этой области продолжались достаточно долго. Начало им было положено еще в итальянском городе Мессина, в котором микробиолог наблюдал за поведением и личинок

Патолог обнаружил, что блуждающие клетки наблюдаемых созданий чужеродные тела окружают, а затем поглощают их. Кроме того, они рассасывают и следом уничтожают те ткани, которые не нужны организму более. Он приложил немало усилий для разработки своей концепции. Создатель клеточной теории иммунитета ввел, собственно, понятие «фагоциты», выведенное от греческих слов «фагес» - поедать и «китос» - клетка. То есть новый термин буквально означал процесс поедания клеток. К идее таких фагоцитов ученый пришел несколько ранее, когда изучал внутриклеточное пищеварение в различных клетках соединительной ткани у беспозвоночных: губок, амеб и прочих.

У представителей высшего животного мира самыми типичными фагоцитами могут быть названы белые кровяные тельца, то есть лейкоциты. Позднее создатель клеточной теории иммунитета предложил разделять такие клетки на макрофаги и микрофаги. Правильность такого разделения подтверждали достижения ученого П. Эрлиха, который дифференцировал разные типы лейкоцитов посредством окраски. В своих классических работах, посвященных патологии воспаления, создатель клеточной теории иммунитета сумел доказать роль фагоцитирующих клеток в процессе элиминации патогенов. Уже в 1901 году вышел в мир его фундаментальный труд о невосприимчивости к инфекционным болезням. Кроме самого Ильи Мечникова, значительный вклад в развитие и распространение теории фагоцитарного иммунитета внесли И.Г. Савченко, Ф.Я. Чистович, Л.А. Тарасевич, А.М. Березка, В.И. Исаев и ряд других исследователей.

Один из самых древних механизмов, обеспечивающих уничтожение опасных микроорганизмов и их токсинов, посторонних включении - это специальные иммунные клетки. Современный подход к изучению которых, как части иммунологической защиты на клеточном уровне, был основан русским биологом Ильей Ильичом Мечниковым. Его вклад - фагоцитарная теория иммунитета - один из важнейших в развитии иммунологии.

Автор

Российский ученый родился в сороковых годах девятнадцатого века в районе Харьковской Губернии. С отличием окончив гимназию, Илья Ильич поступил на физико-математический факультет Харьковского Университета. Делая огромные успехи по учебе, в девятнадцатилетнем возрасте получает диплом об образовании с отличием.

Затем он занимался изучением биологии и зоологии в Германии, Италии. В шестьдесят седьмом году девятнадцатого века получает магистратурную степень, в течение года становится доктором зоологии. Став профессором Университета в Одесской Губернии, вскоре покидает Российскую Империю и отправляется в Италию, где продолжает заниматься своими исследованиями. Вернувшись Одесскую губернию, Мечников организует медицинскую станцию по борьбе с бактериальными инфекциями, проведение первых прививочных компаний.

В восемьдесят седьмом году девятнадцатого века навсегда покидает пределы Российской Империи, вследствие сложившийся политической ситуации, и уезжает во Францию. Умирает на семьдесят втором году, перенеся повторный инфаркт.

Самыми трудами являются исследования:

  • Над структурным образованием клеток;
  • Эмбрионально-зародышевого развития, где становится автором нового течения биологии - эволюционной эмбрионологии;
  • О мерах защиты растений от вредителей;
  • В области патологии, которые помогли разработать теорию поглощения чужеродного объекта;
  • О пользе иммунопрофилактики в виде вакцинирования;
  • По предотвращению старения и последующей смерти;
  • О пользе пищи и кисломолочной продукции (Простокваша Мечникова);
  • О видах и распространении смертельных заболеваний.

Предложил и доказал теорию фагоцитированных микроорганизмов специальными иммунными клетками, выполняющими защитную и санитарную функции.

Рождение теории фагоцитоза

В своих наблюдениях и изучение биологических реакций ученый множество раз наблюдал процессы борьбы между клетками организма и внешним вредоносным микроорганизмом. Он пришел к выводу, что это иммунологический ответ на возникновение заболеваний. Проводя огромного количество опытов и исследований, определил основу фагоцитарной теории: «блуждающие» клетки начинают окружать чужеродный объект, после чего происходит его поглощение. К «блуждающим» тельцам Мечников отнес:

  • макрофоговые тела - лейкоциты гранулярного типа: нейтрофилы, базофилы;
  • Микрофаговые тела - лейкоциты подвижного типа: моноциты, эпителиальные тельца.

Защитные и санитарные свойства фагоцитов основаны на:

  • Сохранении и очищении организма от токсических веществ, инфекций, продуктов тканевого распада;
  • Связывание патогена специфичными рецепторами;
  • Синтезировании специальных ферментных и биологически активных веществ для выполнения поглотительной функции.

У многих ученых умов теория иммунитета не полностью вызывала понимание. Так как в этот же период шли успешные доказательства концепции Пастера о химической гуморальной форме. В качестве обоснования Мечников объединил теории в совокупность: обе формы не исключают, а дополняющих друг друга:

  • Гуморальная - защита, осуществляемая белковыми антигенами;
  • Клеточная - фагоцитарная теория.

Предприняв опытные сложные исследования, Мечников вместе с Луи Пастером развили концепцию о сложном иммунологическом механизме. Таким образом, ученые доказал, что воспалительные реакции, протекающие в организме - это нормальный физиологический процесс, говорящий об начале иммунного ответа: фагоцитарного и гуморального.

Клетки, осуществляющие фагоцитоз

Фагоцитарная теория иммунитета основана на механизме действия клеток, осуществляющих систему фагоцитоза. К таким телам относятся профессиональных и непрофессиональных исполнителей фагоцитоза.

Профессиональные исполнители - это клетки, чьей главной функцией является обеспечение системы фагоцитоза:

  • Моноциты - самый активный вид фагоцитов, циркулирующих в периферической крови;
  • Макрофаги - клетки, имеющие способность к захвату и перевариванию патогена;
  • Дендритные клетки - помогает формировать клеточный и гуморальный виды защиты;
  • Тучные клетки - лаброциты и мастоциты;
  • Лейкоциты полиморфоядерного типа - тела, имеющие ядра неправильной формы с большим количеством долей. К ним относят:

нейтрофилы - клетки формирующие антибактериальная иммунная система, и эозинофилы - участвуют в уничтожении чужеродного генетического материала.

Непрофессиональные клетки, то есть фагоцитоз для таких телец не является основной задачей, так как они не имеют специфических рецепторов, поэтому выполняют еще и сопутствующие функции, к ним относятся:

  • Фибропласты - осуществляют синтез мелкозернистого жидкого вещества внутри клетки;
  • Эндотелий - осуществляет обменные процессы между кровью и тканями;
  • Эпителии - секретирующие железистые тела.

Все компоненты фагоцитоза находятся в состоянии постоянной боеготовности, так как в один момент могут быть призваны цитокинами в место проникновения патогена. Цитокины сигнализируют об опасности и помогают передавать информацию между фагоцитарными телами, активизируя «дремлющие» клетки.

Стадии фагоцитоза

Весь процесс фагоцитарной реакции представляет однообразную схему, состоящую из восьми определенных действий:

  • Первое - направленность на чужеродный объект. При попадании во внутреннюю среду инородный ген выделяет токсические вещества, чем активирует цитокины, лейкоперины, гистамины - происходит процесс хемотаксиса, благодаря чему идет миграция в очаг инфицирования нейтрофилов, макрофагов;
  • Второе - прикрепление рецепторной связкой или адгезия, произведя распознавание чужака с помощью специальных рецепторов лектиноподобного типа: маннозосвязывающие белки, селектин, происходит фиксирование фагоцита на поверхности чужеродного агента или опсонизация, где последняя является фактором, облегчающим присоединение фагоцитарного тела, стимулируя его функции;
  • Третье - активизация мембранного действия в виде актин-миозиновой реакции, в результате которой освобождается протеинкиназа типа С, дополнительно поступают внутриклеточные ионы кальция, что говорит о подготовке к поглощению антигена;
  • Четвертое - образование цитоплазматического выроста или псевдоподия для обволакивания и полного захвата патогена;
  • Пятое - возникновение вауколевой полости или фагосомы, в которой находится генетически чужеродный элемент и часть фагоцитарной мембраны;
  • Шестое - процесс сливания вауколевой фагосомы и лизосома, тельца, внутри которых имеется большой уровень ферментных веществ, в результате слияния происходит формирование фаголизосома;
  • Седьмое - нейтрализация и переработка патогенной частицы, то есть вредоносный объект погибает под действием ферментов (протеаза, нуклеаза, липаза) и переваривается фагоцитом;
  • Восьмое - дегрануляция с выбросом внутреннего содержимого, образовавшегося после уничтожения патогена, тем самым освобождая специфические медиаторы.

При этом, степень выброса продуктов деградации может говорить о:

  • Незавершенности фагоцитоза, это связано либо с тем, что для одних болезнетворных микроорганизмов это естественный процесс обеспечения их жизнедеятельности (гонококк, микобактерия), либо со слабостью иммунитета;
  • Завершенности - уничтожение патогена.

Механизм действия

Фагоцитарные тельца способны циркулировать по всем внутренним органам и системам. При обнаружении возникшей угрозы, фагоцит, с помощью специфических рецепторов, связывает антиген и начинает его поглощение. Попав внутрь фагоцитарной клетки, патоген нейтрализуется под действием сочетания внутренней фагосомы, лизосомы и ее ферментных веществ. Затем происходит выброс фаголизосом и их гранул и во внеклеточную среду, где начинают функционировать другие иммунные компоненты, образуя очаг воспаления и активируя сосудистую реакцию.

Видео

Теория иммунитета Мечникова

Сначала И.И.Мечников как зо-олог экспериментально изучал морских беспозвоночных фауны Черного моря в Одессе и обратил внимание на то, что опре-деленные клетки (целомоциты) этих животных поглощают инородные субстанции (твердые частицы и бактерий), проник-шие во внутреннюю среду. Затем он увидел аналогию между этим явлением и поглощением белыми клетками крови позвоночных животных микробных телец. Эти процессы на-блюдали и до И.И.Мечникова другие микроскописты. Но толь-ко И.И.Мечников осознал, что это явление не есть процесс питания данной единичной клетки, а есть защитный процесс в интересах целого организма. И.И.Мечников первым рассмат-ривал воспаление как защитное, а не разрушительное явление. Против теории И.И.Мечникова в начале XX в. были большин-ство патологов, так как они наблюдали фагоцитоз в очагах воспаления, т.е. в больных местах, и считали лейкоциты (гной) болезнетворными, а не защитными клетками. Более того, не-которые полагали, что фагоциты - разносчики бактерий по организму, ответственные за диссеминацию инфекций. Но идеи И.И.Мечникова устояли; ученый назвал действующие таким образом защитные клетки "пожирающими клетками". Его мо-лодые французские коллеги предложили использовать гречес-кие корни того же значения. И.И.Мечников принял этот ва-риант, и появился термин "фагоцит". Эти работы и теория Мечникова чрезвычайно понравились Л.Пастеру, и он пригла-сил Илью Ильича работать в свой институт в Париже.

Теория иммунитета Эрлиха

В статье Пауля Эрлиха противомикробные вещества крови автор назвал термином "антитело", так как бактерий в то время называли термином "korper" - микроско-пические тельца. Но П.Эрлиха "посетило" глубокое теорети-ческое прозрение. Несмотря на то, что факты того времени свидетельствовали, что в крови неконтактировавшего с кон-кретным микробом животного или человека не определяются антитела против данного микроба, П.Эрлих каким-то образом осознал, что и до контакта с конкретным микробом в организ-ме уже есть антитела в виде, который он назвал "боковыми цепями". Как мы теперь знаем, это именно так, и "боковые цепи" Эрлиха - это подробно изученные в наше время рецеп-торы лимфоцитов для антигенов. Позже этот же образ мыслей П.Эрлих "применил" к фармакологии: в своей теории химиотерапии он предполагал предсуществование в организме рецеп-торов для лекарственных веществ. В 1908 г. П.Эрлиху вручили Нобелевскую премию за гуморальную теорию иммунитета.

Также есть ещё некоторые теории .

Теория иммунитета Безредки

№ 69 Особенности противовирусного, противобактериального, противогрибкового, противоопухолевого, трансплантационного иммунитета.

Противовирусный иммунитет. Основой противовирусного иммунитета является клеточный иммунитет. Клетки-мишени, ин-фицированные вирусом, уничтожаются цитотоксическими лим-фоцитами, а также NK-клетками и фагоцитами, взаимодействую-щими с Fc-фрагментами антител, прикрепленных к вирусспецифическим белкам инфицированной клетки. Проти-вовирусные антитела способны нейтрализовать только внеклеточно расположенные вирусы, как и факторы неспецифическо-го иммунитета - сывороточные противовирусные ингибиторы. Такие вирусы, окруженные и блокированные белками организ-ма, поглощаются фагоцитами или выводятся с мочой, потом и др. (так называемый «выделительный иммунитет»). Интерфероны усиливают противовирусную резистентность, индуцируя в клет-ках синтез ферментов, подавляющих образование нуклеиновых кислот и белков вирусов. Кроме этого, интерфероны оказывают иммуномодулирующее действие, усиливают в клетках экспрес-сию антигенов главного комплекса гистосовместимости (МНС). Противовирусная защита слизистых оболочек обусловлена сек-реторными IgA, которые, взаимодействуя с вирусами, препятст-вуют их адгезии на эпителиоцитах.

Противобактериальный иммунитет направлен как против бактерий, так и против их токсинов (антитоксический иммуни-тет). Бактерии и их токсины нейтрализуются антибактериаль-ными и антитоксическими антителами. Комплексы бактерия (антигены)-антитела активируют комплемент, компоненты ко-торого присоединяются к Fc-фрагменту антитела, а затем обра-зуют мембраноатакующий комплекс, разрушающий наружную мембрану клеточной стенки грамотрицательных бактерий. Пептидогликан клеточных стенок бактерий разрушается лизоцимом. Антитела и комплемент (СЗЬ) обволакивают бактерии и «приклеивают» их к Fc- и С3b-рецепторам фагоцитов, выпол-няя роль опсонинов вместе с другими белками, усиливающими фагоцитоз (С-реактивным белком, фибриногеном, маннан-связывающим лектином, сывороточным амилоидом).

Основным механизмом антибактериального иммунитета является фагоцитоз. Фагоциты направленно перемещаются к объекту фагоцитоза, реагируя на хемоаттрактанты: вещества микробов, активированные компоненты комплемента (С5а, С3а) и цитокины. Противобактериальная защита слизистых оболочек обусловлена секреторными IgA, которые, взаимодействуя с бактериями, препятствуют их адгезии на эпителиоцитах.

Противогрибковый иммунитет. Антитела (IgM, IgG) при ми-козах выявляются в низких титрах. Основой противогрибкового иммунитета является клеточный иммунитет. В тканях происхо-дит фагоцитоз, развивается эпителиоидная гранулематозная ре-акция, иногда тромбоз кровеносных сосудов. Микозы, особенно оппортунистические, часто развиваются после длительной ан-тибактериальной терапии и при иммунодефицитах. Они сопро-вождаются развитием гиперчувствительности замедленного ти-па. Возможно развитие аллергических заболеваний после реcпираторной сенсибилизации фрагментами условно-патогенных грибов родов Aspergillus, Penicillium, Mucor, Fusarium и др.

Противоопухолевый иммунитет основан на Th1-зависимом клеточном иммунном ответе, активирующем цитотоксические Т-лимфоциты, макрофаги и NK-клетки. Роль гуморального (антительного) иммунного ответа невелика, поскольку антите-ла, соединяясь с антигенными детерминантами на опухолевых клетках, экранируют их от цитопатогенного действиях иммун-ных лимфоцитов. Опухолевый антиген распознается антигенпрезентирующими клетками (дендритными клетками и макро-фагами) и непосредственно или через Т-хелперы (Th1) пред-ставляется цитотоксическим Т-лимфоцитам, разрушающим опу-холевую клетку-мишень.

Кроме специфического противоопухолевого иммунитета, иммунный надзор за нормальным составом тканей реализует-ся за счет неспецифических факторов. Неспецифические фак-торы, повреждающие опухолевые клетки: 1) NK-клетки, систе-ма мононуклеарных клеток, противоопухолевая активность которых усиливается под воздействием интерлейкина-2 (ИЛ-2) и α-, β-интерферонов; 2) ЛАК-клетки (мононуклеарные клетки и NK-клетки, активированные ИЛ-2); 3) цитокины (α — и β -интерфероны, ФНО- α и ИЛ-2).

Трансплантационным иммунитетом назы-вают иммунную реакцию макроорганизма, направленную против пересаженной в него чужеродной ткани (трансплантата). Знание механизмов трансплантационного иммуните-та необходимо для решения одной из важней-ших проблем современной медицины - пе-ресадки органов и тканей. Многолетний опыт показал, что успех операции по пересадке чужеродных органов и тканей в подавляющем большинстве случаев зависит от иммунологи-ческой совместимости тканей донора и реци-пиента.

Иммунная реакция на чужеродные клетки и ткани обусловлена тем, что в их соста-ве содержатся генетически чужеродные для организма антигены. Эти антигены, получившие название трансплантационных или антигенов гистосовместимости, наиболее полно представлены на ЦПМ клеток.

Реакция отторжения не возникает в случае полной совместимости донора и реципиента по антигенам гистосовместимости - такое возможно лишь для однояйцовых близнецов. Выраженность реакции отторжения во мно-гом зависит от степени чужеродности, объема трансплантируемого материала и состояния иммунореактивности реципиента.

При контакте с чужеродными трансплан-тационными антигенами организм реагирует факторами клеточного и гуморального зве-ньев иммунитета. Основным фактором кле-точного трансплантационного иммунитета являются Т-киллеры. Эти клетки после сен-сибилизации антигенами донора мигрируют в ткани трансплантата и оказывают на них антителонезависимую клеточно-опосредованную цитотоксичность.

Специфические антитела, которые образу-ются на чужеродные антигены (гемагглютинины, гемолизины, лейкотоксины, цитотоксины), имеют важное значение в формирова-нии трансплантационного иммунитета. Они запускают антителоопосредованный цитолиз трансплантата (комплемент-опосредованный и антителозависимая клеточно-опосредованная цитотоксичность).

Возможен адоптивный перенос трансплан-тационного иммунитета с помощью активи-рованных лимфоцитов или со специфической антисывороткой от сенсибилизированной особи интактному макроорганизму.

Механизм иммунного отторжения переса-женных клеток и тканей имеет две фазы. В первой фазе вокруг трансплантата и сосудов наблюдается скопление иммунокомпетентных клеток (лимфоидная инфильтрация), в том числе Т-киллеров. Во второй фазе про-исходит деструкция клеток трансплантата Т-киллерами, активируются макрофагальное звено, естественные киллеры, специфический антителогенез. Возникает иммунное воспале-ние, тромбоз кровеносных сосудов, наруша-ется питание трансплантата и происходит его гибель. Разрушенные ткани утилизируются фагоцитами.

В процессе реакции отторжения формиру-ется клон Т- и В-клеток иммунной памяти. Повторная попытка пересадки тех же органов и тканей вызывает вторичный иммунный от-вет, который протекает очень бурно и быстро заканчивается отторжением трансплантата.

С клинической точки зрения выделяют ос-трое, сверхострое и отсроченное отторжение трансплантата. Различаются они по времени реализации реакции и отдельным механизмам.

Вопрос защиты организма от неблагоприятных условий интересовал человека всегда, поэтому сложно установить, когда впервые появилась иммунология. Известно, что уже в первом тысячелетии до н.э. в Китае использовали инокуляции содержимого оспенных папул для привития иммунитета здоровым людям.

В XI веке Авиценна упоминает о приобретенном иммунитете, и на основе его теории итальянский автор Джироламо Фракасторо пишет масштабный трактат «Зараза» (1546 г.).

Развитие теории иммунитета

В конце XIX века благодаря работе Луи Пастера происходит прорыв в развитии иммунологии. В 1881 году ему удалось выполнить вакцинацию животных против сибирской язвы, но в его теории не хватало приемлемого научного обоснования. В это же время немец Эмиль фон Бернинг доказывает образование антитоксинов у людей, переболевших столбняком или дифтерией, а также эффективность переливания крови от таких людей для образования иммунитета у здоровых людей.

Бернинг также исследовал механизмы сывороточной терапии, и его труды положили начало исследованию теории гуморального иммунитета.

Однако ни Пастер, ни Бернинг не смогли предложить достаточно обоснованной теории, описывающей механизмы иммунитета.

Основы современного научного подхода к изучению иммунитета были заложены русским ученым Ильей Мечниковым, положившим начало фагоцитарной теории иммунитета. За исследования невосприимчивости в инфекционных болезнях в 1908 году Мечникова удостоили Нобелевской премии, правда, совместно с П.Эрлихом (автор гуморальной теории иммунитета).

Клеточная иммунология Мечникова

Клеточная иммунология Мечникова

Мечников доказал существование в организме особых амебоидных клеток, способных поглощать патогенные микроорганизмы.

Наблюдая за подвижными клетками морской звезды под микроскопом, Илья Ильич обнаружил, что они не только участвуют в процессе пищеварения, но выполняют защитные функции в организме, обволакивая и поглощая инородные частицы. Мечников дал им название «фагоцитов», а сам процесс получил название «фагоцитоз».

В своей теории ученый описал три основных свойства клеток-фагоцитов:

  1. Способность защищать организм от инфекций, а также очищать его от токсинов (включая продукты распада здоровых тканей).
  2. Способность фагоцитов к вырабатыванию ферментов и биологически активных веществ.
  3. Присутствие антигенов на мембране клеток фагоцитов.

Мечников выделил две группы фагоцитов – гранулярные клетки крови (микрофаги) и подвижные лейкоциты (макрофаги).

Благодаря тому, что иммунокомпетентные клетки способны запоминать антиген, представленный макрофагами, в организме вырабатывается иммунитет против чужеродных элементов определенного вида.

Поэтому при повторном попадании инфекции соответствующая иммунная реакция, препятствующая развитию патогенных процессов.

Основные задачи иммунологии XXI века

Несмотря на значительный прорыв в исследованиях строения и взаимодействия клеток организма, предложенная Мечниковым фагоцитарная теория остается главной основой современной иммунологии.

В 1937 году начались работы по электрофорезу белков крови, положившие начало изучению иммуноглобулинов, вскоре были открыты основные классы антител (иммуноглобулинов), способных идентифицировать и нейтрализовать чужеродные элементы.

Все эти исследования лишь развивают теорию, предложенную Мечниковым, исследуя ее механизмы на более детальном уровне.

Основными вызовами, на которые фагоцитарная теория должна найти ответ, являются вопросы иммунодефицита, лечение онкологических заболеваний, разработка новых вакцин и антиаллергенов.

Перспективными направлениями является изучение механизмов ответной реакции инфекционных микроорганизмов на средства борьбы с ними.

Что запускают их модификации, как происходит этот процесс на биохимическом уровне, каким образом на механизмы иммунитета влияет психическое и эмоциональное состояние и другие дополнительные факторы – эти и другие вопросы остаются пока малоизученными и ждут своих открывателей.

Сегодня 5.

Теории иммунитета

Теория иммунитета Мечникова — теория, согласно которой решающая роль в антибактериальном иммунитете принадлежит фагоцитозу.

Затем он увидел аналогию между этим явлением и поглощением белыми клетками крови позвоночных животных микробных телец. Эти процессы наблюдали и до И.И.Мечникова другие микроскописты. Но только И.И.Мечников осознал, что это явление не есть процесс питания данной единичной клетки, а есть защитный процесс в интересах целого организма. И.И.Мечников первым рассматривал воспаление как защитное, а не разрушительное явление.

Против теории И.И.Мечникова в начале XX в. были большинство патологов, так как они наблюдали фагоцитоз в очагах воспаления, т.е. в больных местах, и считали лейкоциты (гной) болезнетворными, а не защитными клетками.

Более того, некоторые полагали, что фагоциты - разносчики бактерий по организму, ответственные за диссеминацию инфекций. Но идеи И.И.Мечникова устояли; ученый назвал действующие таким образом защитные клетки «пожирающими клетками». Его молодые французские коллеги предложили использовать греческие корни того же значения. И.И.Мечников принял этот вариант, и появился термин «фагоцит».

Эти работы и теория Мечникова чрезвычайно понравились Л.

Пастеру, и он пригласил Илью Ильича работать в свой институт в Париже.

Мечников выявил три важных свойства фагоцитов:

Защищающее и очищающее свойство от токсинов, продуктов отмирания тканей, от инфекций;
Представляющая функция антигенов на мембране клетки;
Секреторное свойство, позволяющее выделять секреции ферментов других биологических веществ.

Опираясь на эти три свойства фагоцитов, можно описать фагоцитоз, как три стадии:

Хемотаксис;
адгезия;
эндоцитоз;

В клетках происходит процесс опсонизации составляющих фагоцитоза.

Опсонины фиксируются на частицах и являются связующим звеном с фагоцитирующей клетки. Главные опсонины – это составляющие комплимента и иммуноглобулины. Это придает клетке высокую чувствительность к фагоцитам и способствует их уничтожению.

Эндоцитоз способствует образованию фагоцитарной вакуоли - фагосомы. Гранулы макрофагов и азурофильные и специфические гранулы нейтрофила перемещаются к фагосоме, и объединяются с ней, выделяя свое содержимое в ткань фагосомы.

Поглощение – это сложный внутриклеточный процесс, который усиливают АТФ-генерирующие механизмы, специфический гликолиз и окислительное фосфорилирование в макрофагах.

В нейтрофилах есть некоторое количество режимов микробоцидности.

Кислородозависимое устройство заключается в увеличении поглощения кислорода и глюкозы с синхронным изгнанием биологически активных неустойчивых результатов возобновления подачи кислорода. Кислородонезависимый механизм объединен с живостью ключевых катионных белков и лизосомальных ферментов, выливающихся в фагосому при дегрануляции.


Фото: Nathan Reading

Теория иммунитета Эрлиха - одна из первых теорий антителообразования, согласно которой у клеток имеются антигенспецифические рецепторы, высвобождающиеся в качестве антител под действием антигена.

В статье Пауля Эрлиха противомикробные вещества крови автор назвал термином «антитело», так как бактерий в то время называли термином «korper» - микроскопические тельца.

Но П. Эрлиха «посетило» глубокое теоретическое прозрение. Несмотря на то, что факты того времени свидетельствовали, что в крови неконтактировавшего с конкретным микробом животного или человека не определяютсяантитела против данного микроба, П. Эрлих каким-то образом осознал, что и до контакта с конкретным микробом в организме уже есть антитела в виде, который он назвал «боковыми цепями».

Как мы теперь знаем, это именно так, и «боковые цепи» Эрлиха - это подробно изученные в наше время рецепторы лимфоцитов для антигенов. Позже этот же образ мыслей П.

Эрлих «применил» к фармакологии: в своей теории химиотерапии он предполагал предсуществование в организме рецепторов для лекарственных веществ.

В 1908 г. П. Эрлиху вручили Нобелевскую премию за гуморальную теорию иммунитета.

Теория иммунитета Безредки — теория, объясняющая защиту организма от ряда инфекционных болезней возникновением специфической местной невосприимчивости клеток к возбудителям.

Инструктивные теории иммунитета - общее название теорий антителообразования, согласно которым ведущая роль в иммунном ответе отводится антигену, прямо участвующему в качестве матрицы при формировании специфической конфигурации антидетерминанты либо выступающему в качестве фактора, направленно изменяющего биосинтез иммуноглобулинов плазматическими клетками.

Теория иммунитета Мечникова — теория, согласно которой решающая роль в антибактериальном иммунитете принадлежит фагоцитозу.
Сначала И.И.Мечников как зоолог экспериментально изучал морских беспозвоночных фауны Черного моря в Одессе и обратил внимание на то, что определенные клетки (целомоциты) этих животных поглощают инородные субстанции (твердые частицы и бактерий), проникшие во внутреннюю среду.

Затем он увидел аналогию между этим явлением и поглощением белыми клетками крови позвоночных животных микробных телец. Эти процессы наблюдали и до И.И.Мечникова другие микроскописты. Но только И.И.Мечников осознал, что это явление не есть процесс питания данной единичной клетки, а есть защитный процесс в интересах целого организма.

И.И.Мечников первым рассматривал воспаление как защитное, а не разрушительное явление. Против теории И.И.Мечникова в начале XX в. были большинство патологов, так как они наблюдали фагоцитоз в очагах воспаления, т.е. в больных местах, и считали лейкоциты (гной) болезнетворными, а не защитными клетками.

Более того, не-которые полагали, что фагоциты - разносчики бактерий по организму, ответственные за диссеминацию инфекций. Но идеи И.И.Мечникова устояли; ученый назвал действующие таким образом защитныеклетки " пожирающими клетками". Его мо-лодые французские коллеги предложили использовать гречес-кие корни того же значения.

И.И.Мечников принял этот ва-риант, и появился термин "фагоцит".Эти работы и теория Мечникова чрезвычайно понравились Л. Пастеру, и он пригла-сил Илью Ильича работать в свой институт в Париже.

Клонально-Селекционная теория иммунитета.

теория Бернета — теория, согласно которой в организме возникают клоны клеток, иммунокомпетентных в отношении различных антигенов; антиген избирательно контактирует с соответствующим клоном, стимулируя выработку им антител.

Данная теория была разработана Франком Бёрнетом (1899-1985) для объяснения функционирования иммунной системы.

Иммунный ответ должен определять огромное число антигенов.

Поэтому человеческий организм должен синтезировать сотни тысяч молекул антител с различными распознающими областями

Клонально-селекционная теория утверждает:

1. Антитела и лимфоциты с необходимой специфичностью уже существуют в организме до первого контакта с антигеном.

2. Лимфоциты, участвующие в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны.

В случае B-лимфоцитов рецепторами являются молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.

Каждый лимфоцит несет на своей поверхности рецепторы только одной специфичности.

4. Лимфоциты, сенсибилизированные антигеном, проходят несколько стадий пролиферации и формируют большой клон плазматических клеток.

Плазматические клетки будут синтезировать антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник.

Сигналами к пролиферации служат цитокины, выделяемые другими клетками. Лимфоциты могут также сами начать выделять цитокины.

Благодаря этому механизму клональной селекции антитела могут накапливаться в достаточно высокой концентрации, чтобы эффективно бороться с инфекцией.

Подобный же механизм существует для селекции антиген-специфичных T-лимфоцитов.

Пролиферирующему клону необходимо время для образования достаточного количества клеток.

Вот почему проходит обычно несколько дней после контакта с антигеном, прежде чем в сыворотке обнаруживаются антитела. Поскольку эти антитела образовались в результате антигенного воздействия, мы говорим о приобретенном иммунном ответе.

Интенсивность ответа, осуществляемого популяцией примированных лимфоцитов, возрастает, главным образом, за счет увеличения клеток, способных воспринимать антигенный стимул.

При этом должна существовать комбинация механизмов, включающих хранение антигена, существование популяции лимфоцитов и постоянное поддерживание отдельных клонов клеток, что и приводит к способности иммунной системы к длительной памяти(приобретенного иммунитета).

Один из наиболее эффективных контролирующих механизмов заключается в том, что продукт реакции одновременно служит ее ингибитором. Именно этот тип отрицательной обратной связи имеет место при образовании антител.

Теория иммунитета Эрлиха - одна из первых теорий антителообразования, согласно которой у клеток имеются антигенспецифические рецепторы, высвобождающиеся в качестве антител под действием антигена.
В статье Пауля Эрлиха противомикробные вещества крови автор назвал термином "антитело", так как бактерий в то время называли термином "korper" - микроско-пические тельца.

Но П. Эрлиха "посетило" глубокое теорети-ческое прозрение. Несмотря на то, что факты того времени свидетельствовали, что в крови неконтактировавшего с кон-кретным микробом животного или человека не определяются антитела против данного микроба, П. Эрлих каким-то образом осознал, что и до контакта с конкретным микробом в организ-ме уже естьантитела в виде, который он назвал "боковыми цепями". Как мы теперь знаем, это именно так, и "боковые цепи" Эрлиха - это подробно изученные в наше время рецеп-торы лимфоцитов для антигенов.Позже этот же образ мыслей П.

Эрлих "применил" к фармакологии: в своей теории химиотерапии он предполагал предсуществование в организме рецеп-торов для лекарственных веществ. В 1908 г. П. Эрлиху вручили Нобелевскую премию за гуморальную теорию иммунитета.

Пастер предложил теорию исчерпанной силы; согласно этой теории «невосприимчивость» представляет состояние, при котором организм человека (как питательная среда) не поддерживает развитие микробов.

Однако автор быстро понял, что его теория не может объяснить ряд наблюдений. В частности, Пастер показал, что если заразить курицу сибирской язвой и держать её ноги в холодной воде, то у неё развивается заболевание (в обычных условиях куры невосприимчивы к сибирской язве). Развитие феномена обусловливало снижение температуры тела на 1-2 °С, то есть ни о каком исчерпывании питательной среды в организме речь идти не могла.

Проверочная работа (глава 1)
285178510795001. Применение какого научного метода иллюстрирует сюжет картины
голландского художника Я. Стена «Пульс», написанной в середине XVII в.? 1) моделирование 2) измерение
3) эксперимент 4) наблюдение
2. Какой метод используется при изучении под микроскопом передвижения амёбы обыкновенной?
1) измерение 2) моделирование
3) сравнение 4) наблюдение
3.

Как называют науку, изучающую закономерности исторического развития
органического мира?
1) анатомия 2)эволюционное учение 3)генетика 4)экология
4.

Кого считают создателем клеточной теории иммунитета?
1) Ч. Дарвина 2)И.П. Павлова 3)Л. Пастера 4)И.И. Мечникова
5. Система наиболее общих знаний в определённой области науки – это
1) факт 2)эксперимент 3)теория 4) гипотеза
6. Сформулировать гипотезу – значит
1) собрать имеющиеся факты 2)выдвинуть предположение
3) подтвердить объективность полученных данных 4)провести эксперимент
7.

Наука цитология получила своё развитие благодаря созданию
1) эволюционного учения 2)клеточной теории
3)рефлекторной теории 4)генной теории
8. Систематика – это наука, изучающая
1) функции организмов в природе 2)родственные связи организмов
3)образ жизни организмов 4)внешнее строение организмов
9.

Законы наследования признаков организма установил
1)И.П. Павлов 2)И.И. Мечников 3)Г. Мендель 4)Ч. Дарвин
10. Какая наука изучает процесс фотосинтеза?
1)генетика 2)физиология 3)экология 4)систематика
11. Факт существования сезонной линьки у животных был установлен
1)методом микрокопирования 2)методом наблюдения
3)экспериментальным методом 4)гибридологическим методом
12. Точно установить степень влияния удобрений на рост растений можно
методом
1)эксперимента 2)наблюдения 3)моделирования 4)анализа
13.

Закономерности передачи наследственных признаков изучает
1)генетика 2)антропология 3)экология 4)молекулярная биология
14. Какая наука изучает ископаемые остатки вымерших организмов?
1)палеонтология 2)генетика 3)эмбриология 4)систематика
15.

Создание схем, чертежей, объектов, похожих на натуральные, относят
к группе методов
1)моделирования 2)измерения 3)наблюдения 4)экспериментальных16.

310578513716000Какой уровень организации жизни отражён на данной фотографии?
1)молекулярно-генетический
2)органоидно-клеточный
3)биогеоценотический
4)популяционно-видовой
17. 310642012255500Какой уровень организации жизни отражён на данном рисунке?
1) молекулярно-генетический
2)органоидно-клеточный
3)организменный
4)биогеоценотический
18. Какой уровень организации живого служит основным объектом изучения цитологии?
1)биогеоценотический 2)популяционно-видовой
3)клеточный 4)биосферный
19.

Чем метод эксперимента отличается от метода наблюдения?
2) он проводится в специально создаваемых и контролируемых условиях
3) он более продолжителен по времени проведения
4) его осуществляют квалифицированные учёные
20. Чем метод моделирования отличается от метода наблюдения?
1) в процессе его проведения собираются достоверные научные факты
2) его проводят квалифицированные учёные
3) он более продолжителен по времени
4) изучается не сам объект, а его копия
21.

Какая наука изучает внутривидовые взаимоотношения организмов:
1) систематика 2) экология 3) селекция 4) морфология
22. На каком уровне организации живого осуществляется в природе
круговорот веществ?
1) клеточном 2) организменном
3) популяционно-видовом 4) биосферном
23.

На каком уровне организации живого происходит борьба засуществование между популяциями?
1) видовом 2) организменном 3) биоценотическом 4) биосферном
24. Для живых объектов природы, в отличие от неживых тел, характерно
1) уменьшение веса 2) перемещение в пространстве
3) дыхание 4) растворение веществ в воде
25. Однородная группа синиц смешанного леса – пример уровня организации
живого
1) организменного 2) биосферного
3) биогеоценотического 4) популяционно-видового
26.

К какому уровню организации живого следует отнести совокупность всех
экосистем планеты?
1) видовому 2) биосферному 3) популяционному 4) организменному
27.

Клевер красный, занимающий определенный ареал, представляет собой уровень организации живой природы
1) организменный 2) биоценотический
3) биосферный 4) популяционно-видовой
28. Процесс биосинтеза белка изучают на уровне:
1) организменном 2) молекулярном
3) биосферном 4) популяционно-видовом
29.

Наивысшим уровнем организации жизни является;
1) организменный 2) молекулярный
3) биосферный 4) биогеоценотический
30.Улучшением существующих пород животных и сортов растений
занимается наука
1) экология 2) молекулярная биология 3) селекция 4) генетика
31. Один из признаков отличия живого от неживого – это способность к
1) изменению размеров 2) самовоспроизведению
3) разрушению 4) неограниченному росту
32.

Все живые организмы объединяет:
1) клеточное строение 2) способность к фотосинтезу
3) наличие ядра в клетке 4) способность к движению
33. Для всех живых организмов характерна способность к:
1) движению 2) обмену веществ
3) питанию белками, жирами, углеводами 4) неограниченному росту
34. Предложил систему классификации живых организмов и ввел бинарную номенклатуру видов:
1) Г. Мендель 2) К. Линней 3) Ж. Б. Ламарк 4) И. Мечников

Одну из первых, достаточно обоснованных экспериментально научных теорий выдвинул на рубеже XIX и XX веков И. И. Мечников. Одной из основных причин старения он считал отравление организма особыми ядами-токсинами, продуктами гнилостного распада, происходящего в кишечнике. Токсины, всасываясь в кровь, вызывают отравление организма. Хроническая интоксикация способствует старению. Ученный предложил вводить в организм молочнокислые бактерии, ослабляющие гнилостные процессы в толстом кишечнике.

Экспериментальные и клинические наблюдения, проведенные самим И.И. Мечниковым и его учениками на существовавшем в то время научном уровне, подтвердили многие положения этой теории, утверждавшей, в частности, и вредность воздействия на организм ядов, поступающих извне: алкоголя, никотина, солей тяжелых металлов и др.

Дальнейшие исследования, проведенные уже в 20-30-е годы нашего столетия, показали, что роль кишечной микрофлоры как главного фактора в развитии процессов старения была несколько преувеличена. Но, не смотря на это, труды И.И. Мечникова явились мощным стимулом к дальнейшему изучению этой проблемы.

Сегодня у медиков нет сомнения в том, что токсические вещества, вызывающие загрязнение окружающей среды и попадающие в пищевые продукты, воду, воздух, а затем внутрь организма, могут вызывать преждевременное старение. Так же актуальна и теория выдвинутая Мечниковым о самоотравлении организма.

Повреждение генетического аппарата клетки под действием химических и физических факторов

Генетический аппарат клетки (ДНК) - самая хрупкая и самая уязвимая ее часть. Не зря ДНК «запрятана» в ядро клетки, да еще и заключена в оболочку хромосом.

Мы находимся в окружении огромного количества химических и физических агентов, повреждающих ДНК, от которых не можем себя оградить. Выхлопные газы, нитраты, нитриты, пестициды и гербициды - вот далеко не полный перечень химических веществ, которые постоянно попадают в наш организм извне и повреждают генетический аппарат. Мало того, сам организм наш вырабатывает большое количество токсичных соединений, способных оказать повреждающее воздействие. Свободные радикалы, продукты азотистого обмена, продукты интоксикации из кишечника - вот далеко не полный перечень того, что повреждает наш наследственный аппарат.

Физических повреждающих агентов ничуть не меньше, чем химических: электромагнитные поля, радиоактивное облучение, рентгеновские лучи, положительные аэроионы, высокие температуры - вот далеко не полный перечень физических повреждающих факторов. Даже нормальная температура человеческого тела - 36,6°С, температура наиболее оптимальная для протекания всех биохимических реакций в организме оказывает повреждающее воздействие на белковые молекулы, и, в первую очередь, на ДНК, как на самую нежную структуру. Не зря в процессе эволюции половые железы мужчин были выведены из брюшной полости наружу. Температура яичек у мужчин на 2-3° ниже температуры в брюшной полости. Более низкая температура в половых железах помогает уменьшить повреждение воздействия тепла на ДНК половых клеток.

Женские половые клетки (в яичниках) помещаются в брюшной полости. Поэтому с возрастом в женских половых клетках накапливается намного больше повреждений ДНК, чем в мужских. Отсюда можно уже сделать вывод, что для здорового потомства возраст матери имеет намного большее значением, чем возраст отца.

Повреждение ДНК под действием химических и физических агентов не является, однако, совсем уж фатальным. В процессе эволюции возникли и закрепились процессы репарации (восстановления) поврежденной ДНК. 98% всех повреждений ДНК устраняется самой же клеткой. Существуют специальные ферменты, «вырезающие» из ДНК поврежденный участок. Затем на месте вырезанного участка с помощью других ферментов выстраивается новый, аналогичный удаленному. Поврежденная же часть ДНК выводится из организма.

Если процесс репарации не закончен до того, как клетке вступает в фазу деления, то во время деления она может погибнуть, т.к. одноцепотчатая структура разделившейся молекулы

ДНК имеет пустой участок и в этом месте удвоение молекулы ДНК произойти не может. Как видим, ДНК сама себя «Ремонтирует», Процесс этого текущего ремонта, как, впрочем, и любой другой процесс находится под контролем соответствующих генов. С возрастом, по мере исчерпания генетического потенциала клеток, таких репарирующих (восстанавливающих) генов становится все меньше и меньше. Процесс репарации ДНК. Таким образом, постепенно затухает и это вносит свой вклад в старение и гибель клетки. Исследованные долгожителя помимо всего прочего отличаются высокой способностью ДНК к репарации после различных повреждений. Пионерами теории спонтанного повреждения ДНК были американские ученые Мэррат (теория накопления ошибок) и Бьеркстен (теория поперечных ошибок спиральных сшивок спиральных нитей). В нашей стране классические труды, посвященные повреждениям и репарации ДНК, были написаны Фролькисом В.В.



Что еще почитать