Среднеквадратическое отклонение пример расчета. Среднеквадратическое отклонение формулы в excel. Предельная ошибка выборки наблюдения, средняя ошибка выборки, порядок их расчета

Среднеквадрати́ческое отклоне́ние (синонимы: среднее квадрати́ческое отклоне́ние , среднеквадрати́чное отклоне́ние , квадрати́чное отклоне́ние ; близкие термины: станда́ртное отклоне́ние , станда́ртный разбро́с ) - в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания . При ограниченных массивах выборок значений вместо математического ожидания используется среднее арифметическое совокупности выборок.

Энциклопедичный YouTube

  • 1 / 5

    Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического , при построении доверительных интервалов , при статистической проверке гипотез , при измерении линейной взаимосвязи между случайными величинами. Определяется как квадратный корень из дисперсии случайной величины .

    Среднеквадратическое отклонение:

    s = n n − 1 σ 2 = 1 n − 1 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s={\sqrt {{\frac {n}{n-1}}\sigma ^{2}}}={\sqrt {{\frac {1}{n-1}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}};}
    • Примечание: Очень часто встречаются разночтения в названиях СКО (Среднеквадратического отклонения) и СТО (Стандартного отклонения) с их формулами. Например, в модуле numPy языка программирования Python функция std() описывается как "standart deviation", в то время как формула отражает СКО (деление на корень из выборки). В Excel же функция СТАНДОТКЛОН() другая (деление на корень из n-1).

    Стандартное отклонение (оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на основе несмещённой оценки её дисперсии) s {\displaystyle s} :

    σ = 1 n ∑ i = 1 n (x i − x ¯) 2 . {\displaystyle \sigma ={\sqrt {{\frac {1}{n}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}}.}

    где σ 2 {\displaystyle \sigma ^{2}} - дисперсия ; x i {\displaystyle x_{i}} - i -й элемент выборки; n {\displaystyle n} - объём выборки; - среднее арифметическое выборки:

    x ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + … + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\ldots +x_{n}).}

    Следует отметить, что обе оценки являются смещёнными. В общем случае несмещённую оценку построить невозможно. Однако оценка на основе оценки несмещённой дисперсии является состоятельной .

    В соответствии с ГОСТ Р 8.736-2011 среднеквадратическое отклонение считается по второй формуле данного раздела. Пожалуйста, сверьте результаты.

    Правило трёх сигм

    Правило трёх сигм ( 3 σ {\displaystyle 3\sigma } ) - практически все значения нормально распределённой случайной величины лежат в интервале (x ¯ − 3 σ ; x ¯ + 3 σ) {\displaystyle \left({\bar {x}}-3\sigma ;{\bar {x}}+3\sigma \right)} . Более строго - приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале (при условии, что величина x ¯ {\displaystyle {\bar {x}}} истинная, а не полученная в результате обработки выборки).

    Если же истинная величина x ¯ {\displaystyle {\bar {x}}} неизвестна, то следует пользоваться не σ {\displaystyle \sigma } , а s . Таким образом, правило трёх сигм преобразуется в правило трёх s .

    Интерпретация величины среднеквадратического отклонения

    Большее значение среднеквадратического отклонения показывает больший разброс значений в представленном множестве со средней величиной множества; меньшее значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

    Например, у нас есть три числовых множества: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8}. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения - значения внутри множества сильно расходятся со средним значением.

    В общем смысле среднеквадратическое отклонение можно считать мерой неопределённости. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить. отождествляется с риском портфеля.

    Климат

    Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой на равнине. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

    Спорт

    Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

    Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

    Среднеквадрати́ческое отклоне́ние (среднее квадрати́ческое отклоне́ние , среднеквадрати́чное отклоне́ние , квадрати́чное отклоне́ние , станда́ртное отклоне́ние , станда́ртный разбро́с ) - в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания . Обычно указанные термины означают квадратный корень из дисперсии случайной величины, но иногда могут означать тот или иной вариант оценки этого значения.

    В литературе обычно обозначают греческой буквой σ {\displaystyle \sigma } (сигма).

    Основные сведения

    Среднеквадратическое отклонение определяется как квадратный корень из дисперсии случайной величины : σ = D [ X ] {\displaystyle \sigma ={\sqrt {D[X]}}} .

    Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического , при построении доверительных интервалов , при статистической проверке гипотез , при измерении линейной взаимосвязи между случайными величинами.

    На практике, когда вместо точного распределения случайной величины в распоряжении имеется лишь выборка, стандартное отклонение, как и математическое ожидание, оценивают (выборочная дисперсия), и делать это можно разными способами. Термины «стандартное отклонение» и «среднеквадратическое отклонение» обычно применяют к квадратному корню из дисперсии случайной величины (определённому через её истинное распределение), но иногда и к различным вариантам оценки этой величины на основании выборки.

    В частности, если x i {\displaystyle x_{i}} - i -й элемент выборки, n {\displaystyle n} - объём выборки, x ¯ {\displaystyle {\bar {x}}} - среднее арифметическое выборки (выборочное среднее - оценка математичекого ожидания величины):

    x ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + … + x n) , {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\ldots +x_{n}),}

    то два основных способа оценки стандартного отклонения записываются нижеследующим образом.

    Оценка стандартного отклонения на основании смещённой оценки дисперсии (иногда называемой просто выборочной дисперсией ):

    S = 1 n ∑ i = 1 n (x i − x ¯) 2 . {\displaystyle S={\sqrt {{\frac {1}{n}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}}.}

    Кроме того, среднеквадратическим отклонением называют математическое ожидание квадрата разности истинного значения случайной величины и её оценки для некоторого метода оценки . Если оценка несмещённая (выборочное среднее - как раз несмещённая оценка для случайной величины), то эта величина равна дисперсии этой оценки.

    Правило трёх сигм

    Правило трёх сигм () гласит: вероятность того, что любая случайная величина отклонится от своего среднего значения менее чем на 3 σ {\displaystyle 3\sigma } - P (| ξ − E ξ ∣< 3 σ) ≥ 8 9 {\displaystyle P(|\xi -E\xi \mid <3\sigma)\geq {\frac {8}{9}}} .

    Климат

    Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой на равнине. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

    Спорт

    Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

    Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

    Пример вычисления стандартного отклонения оценок учеников

    Предположим, что интересующая нас группа (генеральная совокупность) это класс из восьми учеников, которым выставляются оценки по 10-бальной системе. Так как мы оцениваем всю группу, а не её выборку, можно использовать стандартное отклонение на основании смещённой оценки дисперсии. Для этого берём квадратный корень из среднего арифметического квадратов отклонений величин от их среднего значения.

    Пусть оценки учеников класса следующие:

    2 , 4 , 4 , 4 , 5 , 5 , 7 , 9. {\displaystyle 2,\ 4,\ 4,\ 4,\ 5,\ 5,\ 7,\ 9.}

    Тогда средняя оценка равна:

    μ = 2 + 4 + 4 + 4 + 5 + 5 + 7 + 9 8 = 5 {\displaystyle \mu ={\frac {2+4+4+4+5+5+7+9}{8}}=5}

    Вычислим квадраты отклонений оценок учеников от их средней оценки.

    Полученные из опыта величины неизбежно содержат погрешности, обусловленные самыми разнообразными причинами. Среди них следует различать погрешности систематические и случайные. Систематические ошибки обусловливаются причинами, действующими вполне определенным образом, и могут быть всегда устранены или достаточно точно учтены. Случайные ошибки вызываются весьма большим числом отдельных причин, не поддающихся точному учету и действующих в каждом отдельном измерении различным образом. Эти ошибки невозможно совершенно исключить; учесть же их можно только в среднем, для чего необходимо знать законы, которым подчиняются случайные ошибки.

    Будем обозначать измеряемую величину через А, а случайную ошибку при измерении х. Так как ошибка х может принимать любые значения, то она является непрерывной случайной величиной, которая вполне характеризуется своим законом распределения.

    Наиболее простым и достаточно точно отображающим действительность (в подавляющем большинстве случаев) является так называемый нормальный закон распределения ошибок :

    Этот закон распределения может быть получен из различных теоретических предпосылок, в частности, из требования, чтобы наиболее вероятным значением неизвестной величины, для которой непосредственным измерением получен ряд значений с одинаковой степенью точности, являлось среднее арифметическое этих значений. Величина 2 называется дисперсией данного нормального закона.

    Среднее арифметическое

    Определение дисперсии по опытным данным. Если для какой-либо величины А непосредственным измерением получено n значений a i с одинаковой степенью точности и если ошибки величины А подчинены нормальному закону распределения, то наиболее вероятным значением А будет среднее арифметическое :

    a - среднее арифметическое,

    a i - измеренное значение на i-м шаге.

    Отклонение наблюдаемого значения (для каждого наблюдения) a i величины А от среднего арифметического : a i - a.

    Для определения дисперсии нормального закона распределения ошибок в этом случае пользуются формулой:

    2 - дисперсия,
    a - среднее арифметическое,
    n - число измерений параметра,

    Среднеквадратическое отклонение

    Среднеквадратическое отклонение показывает абсолютное отклонение измеренных значений от среднеарифметического . В соответствии с формулой для меры точности линейной комбинации средняя квадратическая ошибка среднего арифметического определяется по формуле:

    , где


    a - среднее арифметическое,
    n - число измерений параметра,
    a i - измеренное значение на i-м шаге.

    Коэффициент вариации

    Коэффициент вариации характеризует относительную меру отклонения измеренных значений от среднеарифметического :

    , где

    V - коэффициент вариации,
    - среднеквадратическое отклонение,
    a - среднее арифметическое.

    Чем больше значение коэффициента вариации , тем относительно больший разброс и меньшая выравненность исследуемых значений. Если коэффициент вариации меньше 10%, то изменчивость вариационного ряда принято считать незначительной, от 10% до 20% относится к средней, больше 20% и меньше 33% к значительной и если коэффициент вариации превышает 33%, то это говорит о неоднородности информации и необходимости исключения самых больших и самых маленьких значений.

    Среднее линейное отклонение

    Один из показателей размаха и интенсивности вариации - среднее линейное отклонение (средний модуль отклонения) от среднего арифметического. Среднее линейное отклонение рассчитывается по формуле:

    , где

    _
    a - среднее линейное отклонение,
    a - среднее арифметическое,
    n - число измерений параметра,
    a i - измеренное значение на i-м шаге.

    Для проверки соответствия исследуемых значений закону нормального распределения применяют отношение показателя асимметрии к его ошибке и отношение показателя эксцесса к его ошибке.

    Показатель асимметрии

    Показатель асимметрии (A) и его ошибка (m a) рассчитывается по следующим формулам:

    , где

    А - показатель асимметрии,
    - среднеквадратическое отклонение,
    a - среднее арифметическое,
    n - число измерений параметра,
    a i - измеренное значение на i-м шаге.

    Показатель эксцесса

    Показатель эксцесса (E) и его ошибка (m e) рассчитывается по следующим формулам:

    , где

    При статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.

    Среднеквадратическое отклонение:

    Стандартное отклонение (оценка среднеквадратического отклонения случайной величины Пол, стены вокруг нас и потолок,x относительно её математического ожидания на основе несмещённой оценки её дисперсии):

    где - дисперсия ; - Пол, стены вокруг нас и потолок,i -й элемент выборки; - объём выборки; - среднее арифметическое выборки:

    Следует отметить, что обе оценки являются смещёнными. В общем случае несмещённую оценку построить невозможно. Однако оценка на основе оценки несмещённой дисперсии является состоятельной .

    Правило трёх сигм

    Правило трёх сигм () - практически все значения нормально распределённой случайной величины лежат в интервале . Более строго - не менее чем с 99,7 % достоверностью значение нормально распределенной случайной величины лежит в указанном интервале (при условии, что величина истинная, а не полученная в результате обработки выборки).

    Если же истинная величина неизвестна, то следует пользоваться не , а Пол, стены вокруг нас и потолок,s . Таким образом, правило трёх сигм преобразуется в правило трёх Пол, стены вокруг нас и потолок,s .

    Интерпретация величины среднеквадратического отклонения

    Большое значение среднеквадратического отклонения показывает большой разброс значений в представленном множестве со средней величиной множества; маленькое значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

    Например, у нас есть три числовых множества: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8}. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения - значения внутри множества сильно расходятся со средним значением.

    В общем смысле среднеквадратическое отклонение можно считать мерой неопределенности. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить.

    Практическое применение

    На практике среднеквадратическое отклонение позволяет определить, насколько значения в множестве могут отличаться от среднего значения.

    Климат

    Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой внутри континента. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

    Спорт

    Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

    Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

    Технический анализ

    См. также

    Литература

    * Боровиков, В. STATISTICA. Искусство анализа данных на компьютере: Для профессионалов / В. Боровиков. - СПб. : Питер, 2003. - 688 с. - ISBN 5-272-00078-1 .

    Среднеквадратическое или стандартное отклонение - статистический показатель, оценивающий величину колебаний числовой выборки вокруг ее среднего значения. Практически всегда основное количество величин распределяется в пределе плюс-минус одно стандартное отклонение от среднего значения.

    Определение

    Среднеквадратическое отклонение - это квадратный корень из среднего арифметического значения суммы квадратов отклонений от среднего значения. Строго и математично, но абсолютно непонятно. Это словесное описание формулы расчета стандартного отклонения, но чтобы понять смысл этого статистического термина, давайте разберемся со всем по порядку.

    Представьте себе тир, мишень и стрелка. Снайпер стреляет в стандартную мишень, где попадание в центр дает 10 баллов, в зависимости от удаления от центра количество баллов снижается, а попадание в крайние области дает всего 1 балл. Каждый выстрел стрелка - это случайное целое значение от 1 до 10. Изрешеченная пулями мишень - прекрасная иллюстрация распределения случайной величины.

    Математическое ожидание

    Наш начинающий стрелок долго практиковался в стрельбе и заметил, что он попадает в разные значения с определенной вероятностью. Допустим, на основании большого количества выстрелов он выяснил, что попадает в 10 с вероятностью 15 %. Остальные значения получили свои вероятности:

    • 9 - 25 %;
    • 8 - 20 %;
    • 7 - 15 %;
    • 6 - 15 %;
    • 5 - 5 %;
    • 4 - 5 %.

    Сейчас он готовится сделать очередной выстрел. Какое значение он выбьет с наибольшей вероятностью? Ответить на этот вопрос нам поможет математическое ожидание. Зная все эти вероятности, мы можем определить наиболее вероятный результат выстрела. Формула для вычисления математического ожидания довольно проста. Обозначим значение выстрела как C, а вероятность как p. Математическое ожидание будет равно сумме произведение соответствующих значений и их вероятностей:

    Определим матожидание для нашего примера:

    • M = 10 × 0,15 + 9 × 0,25 + 8 × 0,2 + 7 × 0,15 + 6 × 0,15 + 5 × 0,05 + 4 × 0,05
    • M = 7,75

    Итак, наиболее вероятно, что стрелок попадет в зону, дающую 7 очков. Эта зона будет самой простреленной, что является прекрасным результатом наиболее частого попадания. Для любой случайной величины показатель матожидания означает наиболее встречаемое значение или центр всех значений.

    Дисперсия

    Дисперсия - еще один статистический показатель, иллюстрирующий нам разброс величины. Наша мишень густо изрешечена пулями, а дисперсия позволяет выразить этот параметр численно. Если математическое ожидание демонстрирует центр выстрелов, то дисперсия - их разброс. По сути, дисперсия означает математическое ожидание отклонений значений от матожидания, то есть средний квадрат отклонений. Каждое значение возводится в квадрат для того, чтобы отклонения были только положительными и не уничтожали друг друга в случае одинаковых чисел с противоположными знаками.

    D[X] = M − (M[X]) 2

    Давайте рассчитаем разброс выстрелов для нашего случая:

    • M = 10 2 × 0,15 + 9 2 × 0,25 + 8 2 × 0,2 + 7 2 × 0,15 + 6 2 × 0,15 + 5 2 × 0,05 + 4 2 × 0,05
    • M = 62,85
    • D[X] = M − (M[X]) 2 = 62,85 − (7,75) 2 = 2,78

    Итак, наше отклонение равно 2,78. Это означает, что от области на мишени со значением 7,75 пулевые отверстия разбросаны на 2,78 балла. Однако в чистом виде значение дисперсии не используется - в результате мы получаем квадрат значения, в нашем примере это квадратный балл, а в других случаях это могут быть квадратные килограммы или квадратные доллары. Дисперсия как квадратная величина не информативна, поэтому она представляет собой промежуточный показатель для определения среднеквадратичного отклонения - героя нашей статьи.

    Среднеквадратическое отклонение

    Для превращения дисперсии в логично понятные баллы, килограммы или доллары используется среднеквадратическое отклонение, которое представляет собой квадратный корень из дисперсии. Давайте вычислим его для нашего примера:

    S = sqrt(D) = sqrt(2,78) = 1,667

    Мы получили баллы и теперь можем использовать их для связки с математически ожиданием. Наиболее вероятный результат выстрела в этом случае будет выражен как 7,75 плюс-минус 1,667. Этого достаточно для ответа, но так же мы можем сказать, что практически наверняка стрелок попадет в область мишени между 6,08 и 9,41.

    Стандартное отклонение или сигма - информативный показатель, иллюстрирующий разброс величины относительно ее центра. Чем больше сигма, тем больший разброс демонстрирует выборка. Это хорошо изученный коэффициент и для нормального распределения известно занимательное правило трех сигм. Установлено, что 99,7 % значений нормально распределенной величины лежат в области плюс-минус трех сигм от среднего арифметического.

    Рассмотрим на примере

    Волатильность валютной пары

    Известно, что на валютном рынке широко используются приемы математической статистики. Во многих торговых терминалах встроены инструменты для подсчета волатильности актива, который демонстрирует меру изменчивости цены валютной пары. Конечно, финансовые рынки имеют свою специфику расчета волатильности как то цены открытия и закрытия биржевых площадок, но в качестве примера мы можем подсчитать сигму для последних семи дневных свечей и грубо прикинуть недельную волатильность.

    Наиболее волатильным активом рынка Форекс по праву считается валютная пара фунт/иена. Пусть теоретически в течение недели цена закрытия токийской биржи принимала следующие значения:

    145, 147, 146, 150, 152, 149, 148.

    Введем эти данные в калькулятор и подсчитаем сигму, равную 2,23. Это означает, что в среднем курс японской иены изменялся на 2,23 иены ежедневно. Если бы все было так замечательно, трейдеры заработали бы на таких движениях миллионы.

    Заключение

    Стандартное отклонение используется в статистическом анализе числовых выборок. Это полезный коэффициент позволяющий оценить разброс данных, так как два набора с, казалось бы, одинаковым средним значением могут быть абсолютно разными по разбросу величин. Используйте наш калькулятор для поиска сигм небольших выборок.



Что еще почитать