Скорость, сила и направление ветра. Прибор для измерения скорости ветра (анемометр): виды, инструкции. Анемометр крыльчатый Ветер 26 км в час

Ветра и определения направления его дуновения известен как обсерватор, или анемометр. Применяют такие устройство при необходимости контроля над параметрами перемещения воздушных масс.

Принцип функционирования

Несмотря на разнообразие анемометров, которые отличаются конструктивно, большинство из них работают по принципу определения характера действия воздушного потока на подвижные вращающиеся элементы.

Приборы данной категории способны определять максимальную текущую при дуновении потока в определенном направлении. Отдельные модели выдают показатели объемного расхода воздуха, температуры потока, влажности. Таким образом, функциональный прибор для измерения скорости ветра превращается в портативную метеостанцию.

Типы

Выделяют несколько отдельных разновидностей устройств, способных производить расчет скорости ветра. В настоящее время выделяют следующие типы приборов данного назначения:

  • вращательные;
  • вихревые;
  • тепловые;
  • динамометрические;
  • оптические;
  • ультразвуковые.

Давайте подробно рассмотрим устройства каждого типа, определим их возможности, способы эксплуатации.

Вращательные анемометры

Метеорологический прибор может быть оснащен чашками либо лопастями, которые играют роль чувствительного элемента. Последние подвижно закрепляются на вертикальном стержне и соединяются с измерителем. Перемещение воздушных потоков заставляет такие вертушки вращаться вокруг оси. По мере движения измерительный механизм фиксирует количество оборотов в течение определенного временного отрезка. Визуальную информацию выдает шкала скорости ветра либо цифровой дисплей.

Конструкции данного типа изобретены достаточно давно. Однако, несмотря на появление более совершенных приборов, вращательные анемометры до сих пор продолжают успешно эксплуатироваться метеорологами по всему миру.

Вихревые анемометры

В таких приборах измерение скорости и происходит за счет воздействия воздушных потоков на легкое лопастное колесо, расположенное в вертикальной плоскости. Как и в предыдущем случае, вращение крыльчатки посредством воздействия на систему передает данные к счетному механизму.

В настоящее время наиболее распространены ручные вихревые анемометры. Последние используются для измерения скорости воздушных потоков в вентиляционных системах и трубопроводах, устанавливаются в воздуховодах промышленных и жилых объектов.

Тепловые анемометры

Не слишком востребованы тепловые приборы. Чаще всего необходимость в их применении возникает при измерении показателей медленных воздушных потоков.

Функционирует тепловой ветра по принципу измерения температуры нити накаливания либо специальной пластины, на которую оказывается давление воздуха. При различных показателях потока выделяется определенное количество энергии, которое позволяет поддерживать ту или иную температуру теплового элемента. Таким нехитрым способом и определяется скорость ветра.

Динамометрические анемометры

Прибор для измерения скорости ветра может также функционировать благодаря определению показателей давления ветрового потока в средине запаянной с одной стороны Г-образной трубки. Данные получают на основе сравнения избыточного воздушного давления снаружи и внутри элемента.

Динамометрический прибор для измерения скорости ветра применяется не только в метеорологии. Устанавливаются подобные устройства вентиляционных системах и газоходах, где вычисляют объемный расход потоков и их скорость.

Ультразвуковые анемометры

Принцип функционирования устройств данной категории основывается на определении на приемнике в зависимости от показателей потока воздушных масс. Здесь представлены наиболее высокоточные, современные устройства, которые также позволяют фиксировать направление ветровых потоков.

Выделяют трехмерные и двухмерные ультразвуковые приборы. Первые дают возможность получать показатели направления перемещения потоков в трех компонентах. В свою очередь, двухмерный метеорологический прибор позволяет измерять направление и скорость ветра лишь в горизонтальной плоскости. Некоторые ультразвуковые системы производят вычисления температуры воздушных потоков.

Оптические анемометры

Ученые-физики, инженеры, задействованные в космических программах, часто прибегают к применению лазерных оптических приспособлений для измерения скорости и направления перемещения воздушных потоков. Работают подобные устройства согласно определению зависимости рассеянного либо отраженного подвижным объектом света от его скорости. Данный способ не предполагает непосредственного воздействия газообразных, твердых либо жидких веществ на элементы измерительного устройства.

Сфера применения оптических анемометров крайне широка, начиная с определения направлений перемещения веществ в живых клетках и капиллярах и заканчивая вычислением скорости движения газов в атмосфере.

Эксплуатация лазерных устройств помогает с высокой точностью рассчитывать скорость воздушных потоков вокруг подвижных объектов, в частности, автотранспорта, летательных аппаратов, космических тел. Полученные расчеты дают возможность исследователям, инженерам и механикам разрабатывать наиболее аэродинамические формы при конструировании техники.

На что следует обращать внимание при выборе прибора для измерения скорости и направления перемещения воздушных потоков? Определяющее значение здесь имеет перечень задач, что поставлены перед пользователем. В зависимости от этого, значение имеют такие технические характеристики прибора:

  • максимальный измерительный диапазон;
  • величина погрешностей;
  • возможность применения в тех или иных температурных условиях;
  • уровень безопасности для пользователя при воздействии на устройство агрессивных факторов окружающей среды;
  • тип: стационарный либо переносной прибор;
  • степень защищенности механизма от воздействий атмосферных осадков;
  • характер питания устройства и способ формирования данных;
  • габариты прибора;
  • возможность вычисления показателей в ночное время суток (наличие подсветки).

В настоящее время для работы в условиях крайне пониженных температур возможно использование метеорологических приборов с подогревателями. Для рудников и шахт применяют специализированные анемометры, что способны исправно функционировать при высокой запыленности окружающего пространства и во взрывоопасной среде. Такие функциональные приборы переносят воздействие повышенной влажности и остаются работоспособными при значительных перепадах температур.

В итоге

Как видно, в зависимости от личных потребностей, имеется возможность выбрать наиболее подходящее устройство для фиксации показателей воздушных потоков. Однако здесь имеются свои сложности. Поскольку все анемометры являются измерительными приборами, они подлежат сертификации и аттестации в соответствующих государственных учреждениях.

Направление ветра научились измерять еще в античные времена. Для этого древние греки на крышах своих домов устанавливали башенки со шпилями и флюгерами на них. Но особенно преуспели в измерении направления и скорости ветра прибалтийские мастера. Их кормило море. И знать, что принесет тебе завтрашний день, был для них актуально как ни для кого.

Обычно флюгер делали в виде фигурки какого-нибудь животного, которая вращалась и показывала стрелкой направление ветра, а вертушка его примерную скорость.

Прибор для измерения скорости ветра.

Прибор для измерения скорости ветра — детский анемометр

Для измерения скорости ветра ещё в XVII в. ученый из Англии Роберт Гук изобрел специальный прибор - анемометр. Его название, состоящее из двух древнегреческих слов: «анемо» - «ветер» и «метр» - «измеряю» само говорило за себя. Вертушка анемометра вращалась, и по количеству ее оборотов вычисляли скорость ветра в данный момент в метрах в секунду. Зная направление и скорость ветра, можно предсказать, как в ближайшем будущем изменится погода.

В 1963 году Всемирная метеорологическая организация уточнила шкалу Бофорта и она была принята для приближенной оценки скорости ветра по его воздействию на наземные предметы или по волнению в открытом море. Средняя скорость ветра указывается на стандартной высоте 10 метров над открытой ровной поверхностью.

Дым (от трубки капитана) поднимается вертикально, листья деревьев неподвижны. Зеркально гладкое море.

Ветер 0 - 0,2м/с

Дым отклоняется от вертикального направления, на море легкая рябь, пены на гребнях нет. Высота волн до 0,1м.

Ветер чувствуется лицом, листья шелестят, флюгер начинает двигаться, на море короткие волны максимальной высотой до 0,3м.

Ветер 1,6 - 3,3м/с.

Листья и тонкие ветки деревьев колышутся, колышутся легкие флаги, легкое волне- ние на воде, изредка образуются маленькие барашки.

Средняя высота волн 0,6 м. Ветер 3,4 - 5,4 м/с.

Ветер поднимает пыль, бумажки; качаются тонкие ветви деревьев, белые барашки на море видны во многих местах.

Максимальная высота волн до 1,5 м. Ветер 5,5 - 7,9 м/с.

Качаются ветки и тонкие стволы деревьев, ветер чуствуется рукой, повсюду видны белые барашки.

Максимальная высота волны 2,5 м, средняя - 2 м. Ветер 8,0 - 10,7 м/с.

В такую погоду мы пробовали уйти по Балтийскому морю из Дарлово. (Польша) против волны. За 30 минут прошли всего ок. 10км. и сильно вымокли от брызг. Возвращались по попутной - оч. весело.

Качаются толстые сучья деревьев, тонкие деревья гнутся, гудят телефонные провода, зонтики используются с трудом; белые пенистые гребни занимают значительные площади, образуется водяная пыль. Максимальная высота волн - до 4м, средняя - 3м. Ветер 10,8 - 13,8м/с.

Такую погоду застали на катерах перед Ростоком. Штурман боялся смотреть по стороннам, самое ценное было рассовано по карманам, рация привязана к жилету. Брызги от боковых волн нас постоянно накрывали. Для водкомоторного флота, не говоря уже о простой моторке - это наверное уже максимум...

Качаются стволы деревьев, гнутся большие ветки, трудно идти против ветра, гребни волн срываются ветром. Максимальная высота волн до 5,5м. ветер 13,9 - 17,1м/с.

Ломаются тонкие и сухие сучья деревьев, говорить на ветру нельзя, идти против ветра очень трудно. Сильное волнение на море.

Максимальная высота волн до 7,5м, средняя - 5,5 м. Ветер 17,2 - 20,7м/с.

Гнутся большие деревья, ветер срывает черепицу с крыш, очень сильное волнение на море, высокие волны. Наблюдается очень редко. Сопровождается разрушениями на больших пространствах. На море исключительно высокие волны (максимальная высота - до 16м, средняя - 11,5м), суда небольших размеров временами скрываются из виду.

Ветер 28,5 - 32,6м/с. Жестокий шторм.

Море все покрыто полосами пены. Воздух наполнен пеной и брызгами. Видимость очень плохая. Полный п...ц судам небольших размеров, яхтам и прочим кораблям - лучше не попадать.

Ветер 32,7 м/с и более...

Шкала для определения скорости, силы и названия ветра (шкала Бофорта)

Различают сглаженную скорость за некоторый небольшой промежуток времени имгновенную , скорость в данный момент времени. Скорость измеряют анемометром, с помощью доски Вильда.

Наибольшая средняя годовая скорость ветра (22 м/сек) наблюдалась на побережье Антарктиды. Средняя суточная скорость, там доходит иногда до 44 м/сек, а в отдельные моменты достигает 90 м/сек.

Скорость ветра имеет суточный ход . Он близок к суточному ходу температуры. Максимальная скорость в приземном слое (100 м – летом, 50 м – зимой) наблюдается в 13-14 часов, минимальная скорость – в ночные часы. В более высоких слоях атмосферы суточный ход скорости обратный. Это объясняется изменением интенсивности вертикального обмена в атмосфере в течение суток. Днем интенсивный вертикальный обмен затрудняет горизонтальное перемещение воздушных масс. Ночью этого препятствия нет и Вм перемещаются по направлению барического градиента.

Скорость ветра зависит от разницы давления и прямо пропорциональна ей: чем больше разность давления (горизонтальный барический градиент), тем больше скорость ветра. Средняя многолетняя скорость ветра у земной поверхности 4-9 м/с, редко более 15 м/с. В штормах и ураганах (умеренных широт) - до 30 м/с, в порывах до 60 м/с. В тропических ураганах скорости ветра доходят до 65 м/с, а в порывах могут достигать 120 м/с.

Приборы, при помощи которых измеряется скорость ветра, называют анемометрами. Большинство анемометров построено по принципу ветряной мельницы. Так, например, анемометр Фусса имеет вверху четыре полушария (чашки), обращенные в одну сторону (рис. 75).

Эта система полушарий вращается около вертикальной оси, причем количество оборотов отмечается счетчиком. Прибор выставляется на ветер, и, когда «мельница из полушарий» приобретает более или менее постоянную скорость, включается счетчик на точно определенное время. По табличке, на которой указано количество оборотов для каждой скорости ветра, и по количеству найденных оборотов определяется скорость. Существуют более сложные приборы, которые имеют приспособление для автоматической записи направления и скорости ветра. Применяются также и простые приборы, по которым одновременно можно определить направление и силу ветра. Примером такого прибора может служить распространенный на всех метеорологических станциях флюгер Вильда.

Направление ветра определяется той стороной горизонта, с которой дует ветер. Для его обозначения применяется восемь основных направлений (румбов): С, СЗ, З, ЮЗ, Ю, ЮВ, В, СВ. Направление зависит от распределения давления и от отклоняющего действия вращения Земли.

Роза ветров. Ветры подобно другим явлениям в жизни атмосферы подвержены сильным изменениям. Поэтому и здесь приходится находить средние величины.

Для определения господствующих направлений ветров за тот или другой период времени поступают следующим образом. Проводят из какой-нибудь точки восемь главных направлений, или румбов, и на каждом по определенному масштабу откладывают повторяемость ветров. На полученном изображении, известном под названием розы ветров, ясно видны господствующие ветры (рис. 76).

Сила ветра зависит от его скорости и показывает, какое динамическое давление оказывает воздушный поток на какую-либо поверхность. Сила ветра измеряется в килограммах на квадратный метр (кг/м2).

Структура ветра. Ветер нельзя представить себе однородным воздушным течением, имеющим одинаковое направление и одинаковую скорость во всей своей массе. Наблюдения показывают, что ветер дует порывисто, как бы отдельными толчками, порой стихает, потом снова приобретает прежнюю скорость. При этом направление ветра тоже подвержено изменениям. Наблюдения, производимые в более высоких слоях воздуха, показывают, что порывистость с высотой уменьшается. Замечено также, что в различные времена года и даже в различные часы дня порывистость ветра неодинакова. Наибольшая порывистость наблюдается весной. В течение суток наибольшее ослабление ветра - ночью. Порывистость ветра зависит от характера земной поверхности: чем больше неровностей, тем больше порывистость и наоборот.

Причины ветров. Воздух остаётся в покое до тех пор, пока давление в данном участке атмосферы распределяется более или менее равномерно. Но стоит давлению в каком-либо участке увеличиться или уменьшиться, как воздух потечёт от места большего давления в сторону меньшего. Начавшееся перемещение масс воздуха будет продолжаться до тех пор, пока разность давлений не выравнится и не установится равновесие.

Устойчивого равновесия в атмосфере почти никогда не наблюдается, поэтому и ветры относятся к наиболее часто повторяющимся явлениям в природе.

Причин, нарушающих равновесие атмосферы, очень много. Но одной из первых причин, порождающей разность давлений, является различие температур. Разберём простейший случай.

Перед нами поверхность моря и прибрежная часть суши. Днём поверхность суши нагревается быстрее поверхности моря. Благодаря этому нижний слой воздуха над сушей расширяется больше, чем над морем (рис. 77, I). В результате вверху сейчас же создается воздушное течение от более теплой области к более холодной (рис. 77, II).

Ввиду того, что часть воздуха из теплой области перетекла (вверху) в сторону холодной, давление в пределах холодной области увеличится, а в пределах теплой области уменьшится. В результате возникает воздушное течение теперь уже в нижнем слое атмосферы от холодной области к теплой (в нашем случае от моря к суше) (рис. 77, III).

Подобные воздушные течения обычно возникают на морском побережье или по берегам больших озер и носят название бризов. В приведенном нами примере - бриз дневной. Ночью картина совершенно обратная, ибо поверхность суши, остывая быстрее поверхности моря, становится холоднее. В результате в верхних слоях атмосферы воздух будет течь в сторону суши, а в нижних слоях в сторону моря (ночной бриз).

Подъем воздуха с теплой области и опускание в холодной объединяет верхнее и нижнее течение и создает замкнутую циркуляцию (рис. 78). В этих замкнутых круговоротах вертикальные части пути обыкновенно очень малы, горизонтальные же, наоборот, могут достигать огромных размеров.

Причины различной скорости ветров. Само собой понятно, что скорость ветра должна зависеть от градиента давления (т. е. определяться прежде всего разницей в давлениях на единицу расстояния). Если бы, кроме силы, обусловленной градиентом, никаких других сил на массу воздуха не действовало, то воздух двигался бы равномерно-ускоренно. Однако этого не получается, потому что существует немало причин, которые замедляют движение воздуха. Сюда в первую очередь относится трение.

Различают трение двух видов: 1) трение приземного слоя воздуха о земную поверхность и 2) трение, возникающее внутри самого движущегося воздуха.

Первое находится в прямой зависимости от характера поверхности. Так, например, водная поверхность и равнинная степь создают наименьшее трение. При этих условиях скорость ветра всегда значительно возрастает. Поверхность же, имеющая неровности, создает большие препятствия движущемуся воздуху, что приводит к уменьшению скорости ветра. Особенно сильно понижают скорость ветра городские постройки и лесные насаждения (рис. 79).

Наблюдения, произведенные в лесу, показали, что уже в 50 м от опушки скорость ветра уменьшается до 60-70% первоначальной скорости, в 100 м до 7%, в 200 м до 2-3%.

Трение, которое возникает между соседними слоями движущихся масс воздуха, называют внутренним трением. Внутреннее трение обусловливает передачу движения от одного слоя к другому. Приземный слой воздуха в результате трения о земную поверхность имеет наиболее замедленнее движение. Выше лежащий слой, соприкасаясь с движущимся нижним слоем, также замедляет свое движение, но уже в гораздо меньшей степени. Еще меньшее воздействие испытывает следующий слой и т. д. В результате скорость движения воздуха с высотой постепенно возрастает.

Направление ветров. Если главнейшей причиной ветра является разница в давлениях, то ветер должен дуть из области большего давления в область меньшего давления в направлении, перпендикулярном изобарам. Однако этого не происходит. В действительности (как это установлено наблюдениями) ветер дует главным образом вдоль изобар и только слегка отклоняется в сторону низкого давления. Это происходит вследствие отклоняющего действия вращения Земли. В свое время мы уже говорили, что всякое движущееся тело под влиянием вращения Земли отклоняется от своего первоначального пути в северном полушарии вправо, а в южном влево. Говорили также и о том, что отклоняющаяся сила по направлению от экватора к полюсам возрастает. Совершенно понятно, что движение воздуха, возникшее в силу разности давлений, сразу же начинает испытывать на себе влияние этой отклоняющей силы. Сама по себе эта сила невелика. Но благодаря непрерывности ее действия в конце концов эффект получается очень большой. Если бы не было трения и других влияний, то в результате непрерывно действующего отклонения ветер мог бы описать замкнутую кривую, близкую к окружности. На самом деле благодаря влиянию различных причин подобного отклонения не получается, но тем не менее оно все же весьма значительно. Достаточно указать хотя бы на пассаты, направление которых, при неподвижном состоянии Земли, должно бы совпадать с направлением меридиана. Между тем их направление в северном полушарии северо-восточное, в южном - юго-восточное, а в умеренных широтах, где сила отклонения еще больше, ветер, дующий с юга на север, приобретает западно-юго-западное направление (в северном полушарии).

Главнейшие системы ветров. Ветры, наблюдаемые на земной поверхности, очень разнообразны. В зависимости от причин, порождающих это разнообразие, мы разделим их на три большие группы. К первой группе отнесем ветры, причины которых зависят главным образом от местных условий, ко второй - ветры, обусловленные общей циркуляцией атмосферы, и к третьей - ветры циклонов и антициклонов. Начнем наше рассмотрение с наиболее простых ветров, причины которых зависят преимущественно от местных условий. Сюда мы относим бризы, различные горные, долинные, степные и пустынные ветры, а также и муссонные ветры, которые уже зависят не только от местных причин, но и от общей циркуляции атмосферы.

Ветры чрезвычайно разнообразны по происхождению, характеру и значению. Так, в умеренных широтах, где господствует западный перенос, преобладают ветры западных направлений (СЗ, З, ЮЗ). Эти области занимают обширные пространства - примерно от 30 до 60° в каждом полушарии. В полярных областях ветры дуют от полюсов к зонам пониженного давления умеренных широт. В этих областях преобладают северо-восточные ветры в Арктике и юго-восточные в Антарктике. При этом юго-восточные ветры Антарктики, в отличие от Арктических, более устойчивые и имеют большие скорости.

1. Возникновение ветра. Воздух прозрачен и бесцветен, но все мы знаем, что он существует, так как чувствуем его дви­жение. Воздух всегда находится в движении. Его перемещение в горизонтальном направлении и называется ветром .

Причиной возникновения ветра является разница в атмосферном давлении над участками земной поверхности. Стоит давлению на каком-либо участке увеличить­ся или уменьшиться, как воздух устремля­ется от места большего давления в сторону меньшего. Существуют различные причины, из-за которых нарушается равно­весие атмосферного давления. Главная - не­одинаковое нагревание земной поверхности и различие температур на разных участках.

Рассмотрим это явление на примере ветра бриза, который образуется на берегу моря или крупного озера. На про­тяжении суток бриз дважды меняет свое направление. Проис­ходит это из-за разницы температуры и атмосферного давления над сушей и водной поверхностью днем и ночью. Суша, в отличие от моря, быстро нагревается днем и быстро остывает ночью. Днем на сушей пониженное давление, а над водной поверхностью повышенное, ночью – наоборот. Поэтому дневной бриз дует с моря (озера) на более теплую сушу, ночной - с более охлажденной суши на море (рис. 20). (Объясните образование ночного бриза.) Эти ветры охватывают сравнительно узкую полосу побережья.

2. Направление и скорость ветра. Сила ветра. Ветер характеризуется направлением и скоростью. Направление ветра определяется сто­роной горизонта, откуда он дует (рис. 21). (Как называется ветер, дующий на юг? на запад?) Скорость ветра зависит от атмосферного давления: чем больше разность давления, тем сильнее ветер. На этот показатель ветра влияет трение и плотность воздуха. На вершинах гор ветер усиливается. Любое препятствие (горные системы и горные хребты, здания, лесные полосы и др.) влияют на скорость и направления ветра. Обтекая препятствие, ветер перед ним ослабевает, но с боковых сторон усиливается. Значительно возрастает скорость ветра, например, между двумя близко расположенными горными хребтами. (Почему на открытой местности ветер сильнее, чем в лесу?)

Скорость ветра обычно измеряется в метрах в секунду (м/с). Силу ветра можно оценить по его воздействию на наземные предметы и море в баллах шкалы Бофорта (от 0 до 12 баллов) (табл. 1).

Т а б л и ц а 1

Шкала Бофорта для определения силы ветра

Метры в секунду

Характери­стика ветра

Действие ветра

Полное отсутствие ветра. Дым из труб поднимается отвесно

Дым из труб поднимается не совсем отвесно

Движение воздуха ощущается лицом. Шелестят листья

Колеблются листья и мелкие ветви. Развеваются легкие флаги

Умеренный

Колеблются тонкие ветки деревьев. Ветер подни-мает пыль и клочки бумаги

Колеблются ветки и тонкие стволы деревьев. На воде появляются волны

Колеблются большие ветки. Гудят телефонные провода

Качаются небольшие деревья. На море поднимаются пенящиеся волны

Ломаются ветки деревьев. Трудно идти против ветра

Небольшие разрушения. Срываются домовые трубы и черепица

Значительные разрушения. Деревья вырываются с корнем

Жестокий

Большие разрушения

более 32,7

Производит опустошительные действия

Вы уже знаете, что скорость и направление ветра устанавливают по флюгеру (рис. 22). Флюгер состоит из флюгарки, указателя сторон горизонта, металлической пластинки и дуги со штифтами. Флюгарка свободно вращается на вертикальной оси и устанавливается по ветру. По ней и указателю сторон горизонта определяется направление ветра. Скорость ветра устанавливается по отклонению металлической пластинки от вертикального положения до одного из штифтов дуги. Флюгер на метеорологических станциях устанавливается на высоте 10-12 м над земной поверхностью.

Для более точного измерения скорости ветра используют специальный прибор - анемометр (рис. 23).

Обычная скорость ветра у земной по­верхности составляет 4-8 м/с, и она ред­ко превышает 11 м/с (рис.24). Однако бывают ве­тры разрушительной силы - это штормы (скорость ветра более 18 м/с) и ураганы (более 29 м/с). Скорость ветра в тропиче­ских ураганах достигает 65 м/с, а при от­дельных порывах - даже до 100 м/с. Очень слабый ветер (со скоростью не более 0,5 м/с) или безветрие называется штилем. (При каких условиях наблюдается штиль?)

Скорость ветра, как и направление, постоянно меняется, как во времени, так и в пространстве. Характер движения воздуха можно увидеть, наблюдая за падением снежинок при ветре. Снежинки совершают беспорядочные движения: то взлетают вверх, то опускаются, то описывают сложные петли.

Наглядное представление о повто­ряемости ветров за определенное вре­мя (месяц, сезон, год) дает роза вет­ров (рис. 25). Строят ее следующим образом: проводят восемь главных направле­ний горизонта и на каждом по при­нятому масштабу откладывают повто­ряемость соответствующего ветра. Для этого берутся средние многолетние данные. Концы получен­ных отрезков соединяются. В центре (кружке) указывается по­вторяемость штилей.

? Проверь себя

    Что такое ветер и как он возникает?

    От чего зависит скорость ветра?

    Установите соответствие между скоростью ветра и его характеристикой:

1) 0,6-1,7 м/с а) ураган

2) более 29,0 м/с б) тихий ветер

3) 9,9-12,4 м/с в) сильный ветер

г) слабый ветер

    Определите, откуда и куда будет дуть ветер:

775 мм 761 мм

753 мм 760 мм

748 мм 758 мм

    *Как Вы думаете, откуда появилось пожелание «Попутного ветра!»?

    *По рисунку «Роза ветров для Минска» определите преобладающие ветры для нашей столицы. Подумайте, в какой части города или ее окрестностях лучше всего строить промышленные предприятия для сохранения чистоты воздуха в городе. Обоснуйте ответ.

Практические задание

Постройте розу ветров по следующим данным января (указывается повторяемость ветров в %): С-7, С-В-6, В-11, Ю-В-10, Ю-13, Ю-З-20, З-18, С-З-9, Штиль-6.

Это интересно

Сильные ветры вызывают большое разрушение на суше и волнение на море. В мощных атмосферных вихрях (смерчах) скорость ветра достигает 100 м/с. Они поднимают и перемещают автомобили, здания, мосты. Особенно разрушительные смерчи (торнадо) наблюдаются в США (рис.26). Ежегодно отмечается от 450 до 1500 торнадо с числом жертв в среднем около 100 человек.



Что еще почитать