Приближенное значение величины и погрешности приближений определение. Точные и приближенные значения величин

На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой амперметр не может дать точных показаний тока и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать с их приближенными значениями.

Тот факт, что а" есть приближенное значение числа а , записывается следующим образом:

а ≈ а" .

Если а" есть приближенное значение величины а , то разность Δ = а - а" называется погрешностью приближения *.

* Δ - греческая буква; читается: дельта. Далее встречается еще одна греческая буква ε (читается: эпсилон).

Например, если число 3,756 заменить его приближенным значением 3,7, то погрешность будет равна: Δ = 3,756 - 3,7 = 0,056. Если в качестве приближенного значения взять 3,8, то погрешность будет равна: Δ = 3,756 - 3,8 = -0,044.

На практике чаще всего пользуются не погрешностью приближения Δ , а абсолютной величиной этой погрешности |Δ |. В дальнейшем эту абсолютную величину погрешности мы будем называть просто абсолютной погрешностью . Считают, что одно приближение лучше другого, если абсолютная погрешность первого приближения меньше абсолютной погрешности второго приближения. Например, приближение 3,8 для числа 3,756 лучше, чем приближение 3,7, поскольку для первого приближения
|Δ | = | - 0,044| =0,044, а для второго |Δ | = |0,056| = 0,056.

Число а" а с точностью до ε , если абсолютная погрешность этого приближения меньше чем ε :

|а - а" | < ε .

Например, 3,6 есть приближенное значение числа 3,671 с точностью до 0,1, поскольку |3,671 - 3,6| = | 0,071| = 0,071< 0,1.

Аналогично, - 3 / 2 можно рассматривать как приближенное значение числа - 8 / 5 с точностью до 1 / 5 , поскольку

Если а" < а , то а" называется приближенным значением числа а с недостатком .

Если же а" > а , то а" называется приближенным значением числа а с избытком.

Например, 3,6 есть приближенное значение числа 3,671 с недостатком, поскольку 3,6 < 3,671, а - 3 / 2 есть приближенное значение числа - 8 / 5 c избытком, так как - 3 / 2 > - 8 / 5 .

Если мы вместо чисел а и b сложим их приближенные значения а" и b" , то результат а" + b" будет приближенным значением суммы а + b . Возникает вопрос: как оценить точность этого результата, если известна точность приближения каждого слагаемого? Решение этой и подобных ей задач основано на следующем свойстве абсолютной величины:

|а + b | < |a | + |b |.

Конец работы -

Эта тема принадлежит разделу:

Методическое пособие для выполнения практических работ по дисциплине математика часть 1

Методическое пособие для выполнения практических работ по дисциплине.. для профессий начального профессионального образования и специальностей среднего профессионального образования..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Пояснительная записка
Методическое пособие составлено в соответствии с рабочей программой по дисциплине «Математика», разработанной на основе Федерального государственного образовательного стандарта третьего поколения п

Пропорции. Проценты.
Цели урока: 1) Обобщить теоретические знания по теме «Проценты и пропорции». 2) Рассмотреть виды и алгоритмы решений задач на проценты, составление пропорций решить

Пропорция.
Пропорция (от лат. proportio - соотношение, соразмерность), 1) в математике - равенство между двумя отношениями четырёх величин а, в, с,

ПРАКТИЧЕСКАЯ РАБОТА № 2
«Уравнения и неравенства» Цели урока: 1) Обобщить теоретические знания по теме: «Уравнения и неравенства». 2) Рассмотреть алгоритмы решений заданий теме «Ур

Уравнения, содержащие переменную под знаком модуля.
Модуль числа а определяется следующим образом: П р и м е р: Решить уравнение. Р е ш е н и е. Если, то и данное уравнение примет вид. Можно записать так:

Уравнения с переменной в знаменателе.
Рассмотрим уравнения вида. (1) Решение уравнения вида (1) основано на следующем утверждении: дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель отличен от нуля.

Рациональные уравнения.
Уравнение f(x) = g(x) называется рациональным, если f(x) и g(x) -рациональные выражения. При этом если f(x) и g(x) - целые выражения, то уравнение называют целым;

Решение уравнений методом введения новой переменной.
Суть метода поясним на примере. П р и м е р: Решить уравнение. Р е ш е н и е. Положим, получим уравнение, откуда находим. Задача сводится к решению совокупности уравнений

Иррациональные уравнения.
Иррациональным называется уравнение, в котором переменная содержится под знаком корня или под знаком возведения в дробную степень. Одним из методов решения таких уравнений является метод воз

Метод интервалов
Пример:Решить неравенство. Решение. ОДЗ: откуда имеем x [-1; 5) (5; +) Решим уравнение Числитель дроби равен 0 при x = -1, это и есть корень уравнения.

Упражнения для самостоятельной работы.
3х + (20 – х) = 35,2, (х – 3) - х = 7 – 5х. (х + 2) - 11(х + 2) = 12. х = х, 3у = 96, х + х + х + 1 = 0, – 5,5n(n – 1)(n + 2,5)(n -

ПРАКТИЧЕСКАЯ РАБОТА № 4
«Функции, их свойства и графики» Цели урока: 1) Обобщить теоретические знания по теме: «Функции, свойства и графики». 2) Рассмотреть алгори

Будет грубой ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой.
Пример 3 Построить правую ветвь гиперболы Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело:

Графики обратных тригонометрических функций
Построим график арксинуса Построим график арккосинуса Построим график арктангенса Всего лишь перевернутая ветка тангенса. Перечислим основн

Математические портреты пословиц
Современная математика знает множество функций, и у каждой свой неповторимый облик, как неповторим облик каждого из миллиардов людей, живущих на Земле. Однако при всей непохожести одного человека н


Построить графики функций а)у=х2 ,у=х2+1 ,у=(х-2)2 б)у=1/х, у=1/(x-2),y=1/x -2 на одной координатной плоскости. Построить графики функций c

Натуральные числа

Свойства сложения и умножения натуральных чисел
a + b = b + a - переместительное свойство сложения (a + b) + c = a + (b +c) - сочетательное свойство сложения ab = ba

Признаки делимости натуральных чисел
Если каждое слагаемое делится на некоторое число, то и сумма делится на это число. Если в произведении хотя бы один из множителей делится на некоторое число, то и произведение делитс

Шкалы и координаты
Длины отрезков измеряют линейкой. На линейке (рис. 19) нанесены штрихи. Они разбивают линейку на равные части. Эти части называют делениями. На рисунке 19 длина ка

Рациональные числа
Цели урока: 1) Обобщить теоретические знания по теме «Натуральные числа». 2) Рассмотреть виды и алгоритмы решений задач связанных с понятием натурального числа.

Десятичные дроби. Перевод десятичной дроби в обыкновенную дробь.
Десятичная дробь - это другая форма записи дроби со знаменателем Например, . Если в разложении знаменателя дроби на простые множители содержатся только 2 и 5, то эту дробь можно записать в виде дес

Корень из 2
Допустим противное: рационален, то есть представляется в виде несократимой дроби, где - целое число, а - натуральное число. Возведём предполагаемое равенство в квадрат: . Отсюда

Абсолютная величина суммы любых двух чисел не превышает суммы их абсолютных величин.
ПОГРЕШНОСТИ Разница между точным числом x и его приближенным значением a называется погрешностью данного приближенного числа. Если известно, что | x - a | < a, то величина a называется

Базовый уровень
Пример.Вычислить. Решение: . Ответ: 2,5. Пример. Вычислить. Решение: Ответ: 15.


Существуют различные типы упражнений на тождественные преобразования выражений. Первый тип: явно указано то преобразование, которое необходимо выполнить. Например. 1

Задачи для самостоятельного решения
Отметьте номер правильного ответа: Результат упрощения выражения имеет вид 1. ; 4. ; 2. ; 5. . 3. ; Значение выражения равно 1) 4; 2) ; 3)

Задачи для самостоятельного решения
Найдите значение выражения 1. .2. . 2. . 3. . 4. . 5. .7. . 6.. при. 7.. при. 8.. при. 9. при. 1

Задачи для самостоятельного решения
Вопрос 1. Найдите логарифм 25 по основанию 5. Вопрос 2. Найдите логарифм по основанию 5. Вопрос 3.

ПРАКТИЧЕСКАЯ РАБОТА № 17
«Аксиомы стереометрии и следствия из них» Цель урока: 1) Обобщить теоретические знания

Cтраница 2


Математические действия над приближенными значениями величин называются приближенными, вычислениями. К настоящему времени создана целая наука о приближенных вычислениях, с рядом положений которой мы познакомимся в дальнейшем.  

Результат измерения всегда дает приближенное значение величины. Это связано с неточностью самих измерений, неидеальной точностью измерительных приборов.  

Что называется относительной погрешностью приближенного значения величины.  

В табл. 25 приведены приближенное значения величин / Си / - д при различных амплитудах Um0 для [ диода 6X6, нагруженного сопротивлением R 0 5 мгом. Эта таблица составлена проф.  

В математических таблицах обычно даются приближенные значения величин. При этом считают, что абсолютная погрешность не превосходит половины единицы последнего разряда.  

При этом возникает необходимость находить приближенные значения величин при условии, что граница относительной погрешности не должна превышать наперед заданного значения. На данном занятии будут рассмотрены задачи такого типа.  

Если в данном точном или приближенном значении величины число цифр больше, чем это необходимо по практическим соображениям, то это число округляют. Операция округления чисел состоит в отбрасывании нескольких цифр младших разрядов и замене их нулями; при этом последнюю удерживаемую цифру оставляют без изменения, если первая отбрасываемая цифра меньше 5; если она равна или больше 5, то цифру последнего удерживаемого разряда увеличивают на единицу.  

Условимся считать, что в приближенном значении величины все цифры верные, если его абсолютная погрешность не превышает половины единицы последнего разряда.  

При таком округлении число, характеризующее приближенное значение величины, состоит из верных цифр, а цифра низшего разряда этого числа (последняя в записи) имеет точность 1 того же разряда. Например, запись т 3 68 кг означает т 3 68 0 01 кг, а запись т3 680 кг означает т3 680 0 001 кг.  

Из уравнения видно, что сумма приближенных значений величин А и сумма их погрешностей являются приближенным значением сумм величин X и их абсолютной ошибкой.  

N) в (1) обозначено приближенное значение величины y (xi, x0, г / о), получаемое рассматриваемым методом.  

Расчеты, как правило, производятся с приближенными значениями величин - приближенными числами. Разумная оценка погрешности при вычислениях позволяет указать оптимальное количество знаков, которые следует сохранять при расчетах, а также в окончательном результате.  

В результате счета можно получить или точное или приближенное значение величины. При этом достаточным признаком приг ближенности результата счета является наличие разных ответов при повторных подсчетах.  

В действительности, средняя арифметическая X даст ему лишь приближенное значение величины а xf, и если сама схема его опыта была неудовлетворительна или приборы плохо проверены (например, измерительная линейка вместо 1 м равна 0 999 мм), то, как бы точно наш наблюдатель ни нашел значение а, у него нет оснований считать, что X или а соответствуют истинному значению скорости звука, которая может быть наблюдаема в других самых разнообразных опытах. Основное допущение, которое должно было бы оправдать применение способа средней арифметической к физическим измерениям такого рода, состоит в предположении, что неизвестная величина а xf или, другими словами, что измерение (или вычисление) производится без систематической ошибки.  

На практике, измеряя площади, мы чаще всего пользуемся приближенными значениями величин.  

Введение

Абсолютная погрешность - является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины. Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины может быть различной. Если - измеренное значение, а - истинное значение, то неравенство должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

Существует несколько способов записи величины вместе с её абсолютной погрешностью.

· Обычно используется запись со знаком ±. Например, рекорд в беге на 100 метров, установленный в 1983 году, равен 9,930±0,005 с .

· Для записи величин, измеренных с очень высокой точностью, используется другая запись: цифры, соответствующие погрешности последних цифр мантиссы, дописываются в скобках. Например, измеренное значение постоянной Больцмана равно 1,380 6488 (13)?10 ?23 Дж/К , что также можно записать значительно длиннее как 1,380 6488?10 ?23 ±0,000 0013?10 ?23 Дж/К .

Относительная погрешность - погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или среднему значению измеряемой величины (РМГ 29-99):.

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.

Приближённое значение

С избыточным и недостаточным? В процессе вычислений весьма часто приходится иметь дело с приближенными числами. Пусть А - точное значение некоторой величины, называемое в дальнейшем точным числом А. Под приближенным значением величины А, или приближенным числам, называется число а , заменяющее точное значение величины А. Если а < А, то а называется приближенным значением числа А по недостатку. Если а > А, - то по избытку. Например, 3,14 является приближенным значением числа р по недостатку, а 3,15 - по избытку. Для характеристики степени точности данного приближения пользуются понятием погрешности или ошибки.

Погрешностью Да приближенного числа а называется разность вида

Да = А - а,

где А - соответствующее точное число.

Из рисунка видно, что длина отрезка АВ заключена между 6 см и 7 см.

Значит, 6 - приближенное значение длины отрезка АВ (в сантиметрах) > с недостатком, а 7 - с избытком.

Обозначив длину отрезка буквой у, получим: 6 < у < 1. Если a < х < b, то а называют приближенным значением числа х с недостатком, a b - приближенным значением х с избытком. Длина отрезка АВ (см. рис. 149) ближе к 6 см, чем к 7 см. Она приближенно равна 6 см. Говорят, что число 6 получилось при округлении длины отрезка до целых.

Общие сведения

Часто точное число представляют ограниченным количеством цифр, отбрасывая «лишние» цифры, либо округляя его до определенного разряда. Такое число называют приближенным.

Истинная погрешность приближенного числа, т.е. разность между точным и приближенным числами, при отбрасывании цифр не превышает единицы разряда последней сохраненной цифры, а при отбрасывании с округлением, выполненному по установленным стандартом правилам, половины единицы цифры сохраняемого разряда.

Приближенное число характеризуют числом значащих цифр, к которым относят все цифры, кроме нулей слева.

Цифры в записи приближенного числа называются верными, если погрешность не превышает половины единицы последнего разряда.

К приближенным числам относятся также результаты измерения А, которыми оценивают действительные значения А д измеряемой величины. Так как истинная погрешность полученного результата неизвестна, то ее заменяют понятием предельной абсолютной погрешности Δ пр = | A - A д | или предельной относительной погрешности δ пр = Δ пр / А (чаще указывается в процентах δ пр = 100 Δ пр / А)

Предельная относительная погрешность приближенного числа может быть оценена по формуле:

где δ – число верных значащих цифр;

n 1 – первая слева значащая цифра.

Для определения необходимого числа верных знаков обеспечивающих заданную предельную относительную погрешность следует руководствоваться правилами:

    если первая значащая цифра не превышает трех, то число верных цифр должно быть на единицу больше, чем модуль показателя |-q| при 10 в заданной относительной погрешности δ пр = 10 -q

    если первая значащая цифра 4 и больше, то модуль показателя q равен числу верных цифр.

(Если δ пр = 10 - q , то S можно определить по формуле
)

Правила вычислений с приближенными числами

    Результат суммирования (вычитания) приближенных чисел будет иметь столько верных знаков, сколько их имеет слагаемое с наименьшим числом верных знаков.

    При умножении (делении) в полученном результате будет столько значащих верных цифр, сколько их в исходном числе с наименьшим количеством верных знаков.

    При возведении в степень (извлечении корня) любой степени результат имеет столько же верных знаков, сколько их в основании.

    Число и мантисса его логарифма содержит одинаковое количество верных знаков.

    Правило запасной цифры. Чтобы по возможности уменьшить ошибки округления, рекомендуется в тех исходных данных, которые это позволяют, а также и в результате, если он будет участвовать в дальнейших вычислениях, сохранить по одной лишней цифре сверх того, что определено правилами 1-4.

3. Класс точности и его использование для оценки инструментальной погрешности приборов

Класс точности – обобщенная характеристика, используемая для оценки предельных значений основной и дополнительной погрешностей.

Основной называют погрешность прибора, присущую ему в нормальных условиях эксплуатации.

Условия эксплуатации определяются значениями влияющих на показания приборов величин, не являющихся для данного прибора информативными. К влияющим величинам относят температуру среды, в которой выполняются измерения, положение шкалы прибора, частоту измеряемой величины (не для частотомеров), напряженность внешнего магнитного (или электрического) поля, напряжение питания электронных и цифровых приборов и др.

В технической документации прибора указывают нормальный и рабочий диапазоны значений влияющих величин. Использование прибора при значении влияющей величины вне пределов рабочего диапазона не допускается.

Класс точности прибора устанавливают по форме:

    предела абсолютной погрешности Δ пр = ± а или Δ пр = ± (а + b A);

    предела относительной погрешности δ пр = ± p или δ пр = ± ;

    предела приведенной погрешности γ пр = ± k

Числа a, b, p, c, d, k выбирают из ряда 1; 1,5; 2; 2,5; 4; 5; 6 10 n , где n = 1, 0, -1, -2 и т.д.

А – показания прибора;

А max – верхний предел используемого диапазона измерений прибора.

Приведенная погрешность

,

где А н – нормирующее значение, условно принятое для данного прибора, зависящее от формы шкалы.

Определение А н для наиболее часто встречающихся шкал приведены ниже:

а) односторонняя шкала б) шкала с нулем внутри

А н = А max A н = |A 1 | + A 2

в) шкала без нуля г) существенно неравномерная шкала (для омметров, фазометров)

А н = А 2 – А 1 А н = L

Правила и примеры обозначения классов точности приведены в таблице 3.1.

Таблица 3.1

Формула для предельной основной погрешности

Обозначение класса точности на приборе

общий вид

Δ = ± (а + b A)

± а, ед. величины А

± (а + b A), ед. величины А

Римскими или латинскими буквами

Тема “ ” изучается в 9 классе бегло. И у учащихся, как правило, не до конца формируются навыки ее вычисления.

А ведь с практическим применением относительной погрешности числа , в равно степени как и с абсолютной погрешностью, мы сталкиваемся на каждом шагу.

Во время ремонтных работ измерили (в сантиметрах) толщину m коврового покрытия и ширину n порожка. Получили следующие результаты:

m≈0,8 (с точностью до 0,1);

n≈100,0 (с точностью до 0,1).

Заметим, что абсолютная погрешность каждого из данных измерений не больше 0,1.

Однако 0,1 – это солидная часть числа 0,8 . Как для числа 100 она представляет незначительную ч асть. Это показывает, что качество второго измерения намного выше, чем первого.

Для оценки качества измерения используется относительная погрешность приближенного числа.

Определение.

Относительной погрешностью приближенного числа (значения) называется отношение абсолютной погрешности к модулю приближенного значения.

Относительную погрешность договорились выражать в процентах.

Пример 1.

Рассмотрим дробь 14,7 и округлим ее до целых. Также найдем относительную погрешность приближенного числа:

14,7≈15.

Для вычисления относительной погрешности, кроме приближенного значения, как правило, нужно еще знать и абсолютную погрешность. Абсолютная погрешность не всегда бывает известна. Поэтому вычислить невозможно. И в таком случае достаточно бывает указать оценку относительной погрешности.

Вспомним пример, который был приведен в начале статьи. Там были указаны измерение толщины m ковролина и ширина n порожка.

По итогам измерений m ≈0,8 с точностью до 0,1. Можно сказать, что абсолютная погрешность измерения не больше 0,1. Значит, результат деления абсолютной погрешности на приближенное значение (а это и есть относительная погрешность) меньше или равно 0,1/0,8 = 0,125 = 12,5%.

Т. о., относительная погрешность приближения ≤ 12,5%.

Аналогичным образом вычислим относительную погрешность приближения ширины порожка; она не более 0,1/100 = 0,001 = 0,1%.

Говорят, что в первом случае измерение выполнено с относительной точность до 12,5%, а во втором – с относительной точностью до 0,1%.

Подведем итог.

Абсолютная погрешность приближенного числа - это разность между точным числом x и его приближенным значением a.

Если модуль разности | x a | меньше некоторого D a , то величину D a называют абсолютной погрешностью приближенного числа a .

Относительная погрешность приближенного числа - это отношение абсолютной погрешности D a к модулю числа a , то есть D a / |a | = d a .

Пример 2.

Рассмотрим известное приближенное значение числа π≈3,14.

Учитывая его значение с точностью до стотысячных долей, можно указать его погрешность 0,00159… (запомнить цифры числа π поможет )

Абсолютная погрешность числа π равна: | 3,14 3,14159 | = 0,00159 ≈0,0016.

Относительная погрешность числа π равна: 0.0016/3.14 = 0,00051 = 0,051%.

Пример 3.

Попробуйте самостоятельно вычислить относительную погрешность приближенного числа √2. есть несколько способов, чтобы запомнить цифры числа “квадратный корень из 2″.



Что еще почитать