Презентация на тему "физическая природа звезд". Презентация на тему "физическая природа звезд" Пульсирующие переменные звезды

ФИЗИЧЕСКАЯ ПРИРОДА СОЛНЦА

Солнце представляет собой центральное тело нашей планетной системы и ближайшую к нам звезду.

Среднее расстояние Солнца от Земли равно 149,6*10 6 км, его диаметр в 109 раз больше земного, а объем в 1300 000 раз больше объема Земли. Так как масса Солнца составляет 1,98*10 33 г (333000 масс Земли), то в соответствии с его объе­мом находим, что средняя плотность солнечного вещества равна 1,41 г/см 3 (0,26 средней плотности Земли). По известным значе­ниям радиуса и массы Солнца можно определить, что ускорение силы тяжести на его поверхности достигает 274 м/сек 2 , или в 28 раз больше, чем ускорение силы тяжести на поверхность Земли.

Солнце вращается вокруг оси против хода часовой стрелки при наблюдении с северного полюса эклиптики, т. е. в том же направлении, в каком обращаются вокруг него все планеты. Если смотреть, на диск Солнца, то его вращение совершается от восточного края диска к западному. Ось вращения Солнца наклонена к плоскости эклиптики под углом 83°. Но Солнце вращается не как твердое тело. Сидерический период враще­ния его экваториальной зоны равен 25 сут, близ 60° гелиографической (отсчитанной от солнечного экватора) широты он составляет 30 сут, а у полюсов достигает 35 сут.

При наблюдении Солнца в телескоп заметно ослабление его яркости к краям диска, так как через центр диска проходят лучи, идущие из более глубинных и горячих частей Солнца.

Слой, лежащий на границе прозрачности вещества Солнца и испускающий видимое излучение, называется фотосферой. Фотосфера не является равномерно яркой, а обнаруживает зернистое строение. Светлые зерна, покрывающие фотосферу, называются гранулами. Гранулы - неустойчивые образо­вания, продолжительность их существования - около 2-3 мин, а размеры колеблются в пределах от 700 до 1400 км . На поверхности фотосферы выделяются темные пятна и светлые области, называемые факелами. Наблюдения за пятнами и факелами позволили установить характер вращения Солнца и определить его период.

Над поверхностью фотосферы расположена солнечная атмосфера. Ее нижний слой имеет толщину около 600 км. Вещество этого слоя избирательно поглощает световые волны таких, длин, которые оно само способно излучать. При переиз­лучении происходит рассеяние энергии, что и является непосред­ственной причиной появления основных темных фраунгофероных линий в спектре Солнца.

Следующий слой солнечной атмосферы - хромосфера имеет ярко-красный цвет и наблюдается при полных солнечных затмениях в виде алого кольца, охватывающего темный диск Луны. Верхняя граница хромосферы постоянно волнуется, и поэтому толщина ее колеблется от 15000 до 20000 км.

Из хромосферы выбрасываются протуберанцы - фон­таны раскаленных газов, видимые невооруженным глазом во время полных солнечных затмений. Со скоростью 250-500 км/сек они поднимаются от поверхности Солнца на расстояния, равные в среднем 200000 км, а некоторые из них достигают высо­ты до 1500 000 км.

Над хромосферой располо­жена солнечная корона, видимая при полных солнеч­ных затмениях в виде окру­жающего Солнце серебристо-жемчужного ореола.

Солнечную корону разде­ляют на внутреннюю и внеш­нюю. Внутренняя корона про­стирается до высоты около 500 000 км и состоит из разреженной плазмы – смеси ионов и свободных электронов. Цвет внутренней короны подобен солнечному, а излучение ее представляет собой свет фотосферы, рассеянныйна сво­бодных электронах. Спектр внутренней короны отличается от солнечного спектра тем, что в нем не наблюдаются темные ли­нии поглощения, но зато наблюдаются на фоне непрерывного спектра линии излучения, наиболее яркие из которых принадле­жат многократно ионизованному железу, никелю и некотооым другим элементам. Так как плазма весьма разрежена, то ско­рость движения свободных электронов (а соответственно и их кинетическая энергия) столь велика, что температура внутрен­ней короны оценивается примерно в 1 млн. градусов.

Внешняя корона простирается до высоты более чем в 2 млн. км. В ее состав входят мельчайшие твердые частицы, которые отражают солнечный свет и придают ей светло-желтый оттенок.

В последние годы было установлено, что солнечная корона распространяется значительно дальше, чем предполагалось ра­нее. Наиболее удаленные от Солнца части солнечной короны - сверхкорона - простираются за пределы земной орбиты. По ме­ре удаления от Солнца температура сверхкороны постепенно понижается, а на расстоянии Земли составляет приблизительно 200 000°

Сверхкорона состоит из отдельных разреженных электрон­ных облаков, “вмороженных” в магнитное поле Солнца, кото­рые с большими скоростями движутся от него и, достигая верх­них слоев земной атмосферы, ионизируют и нагревают ее, оказывая тем самым влияние на климатические процессы.

Межпланетное пространство в плоскости эклиптики содержит мелкую пыль, производящую явление зодиакального света. Это явление состоит в том, что весной после захода Солнца на западе или осенью перед восходом Солнца на востоке иногда наблюдается слабое сияние, выступающее из-под горизонта в виде конуса.

Спектр Солнца является спектром поглощения. На фоне не­прерывного яркого спектра располагаются многочисленные тем­ные (фраунгоферовы) линии. Они возникают при прохождении луча света, испускаемого раскаленным газом через более холод­ную среду, образованную тем же газом. При этом на месте яр­кой линии излучения газа наблюдается темная линия его погло­щения.

Каждый химический элемент имеет присущий только ему ли­нейчатый спектр, поэтому по виду спектра можно определить химический состав светящегося тела. Если же излучающее свет вещество является химическим соединением, то в его спектре видны полосы молекул и их соединений. Определив длины волн всех линий спектра, можно установить химические элементы, образующие излучающее вещество. По интенсивности спект­ральных линий отдельных элементов судят о количестве принад­лежащих им атомов. Поэтому спектральный анализ позволяет изучать не только качественный, но и количественный состав небесных светил (точнее, их атмосфер) и является важнейшим методом астрофизических исследований.

На Солнце найдено около 70 известных на Земле химических элементов. Но в основном Солнце состоитиз двух элементов:

водорода (около 70% по массе) и гелия (около 30%). Из про­чих химических элементов (всего 3%) наибольшее распростра­нение имеют азот, углерод, кислород, железо, магний, кремний, кальций и натрий. Некоторые химические элементы, например хлор и бром, на Солнце еще не обнаружены. В спектре солнеч­ных пятен найдены также полосы поглощения химических сое­динений: циана (СN), окиси титана, гидроксила (ОН), углеводорода (СН) и др.

Солнце представляет собой грандиозный источник энергии, непрерывно рассеивающий свет и тепло по всем направлениям. На Землю поступает около 1:2000000000 всей излучаемой Солнцем энергии. Количество энергии, получаемое Землей от Солнца, определяется по значению солнечной постоянной. Сол­нечной постоянной называется количество энергии, получаемой в минуту 1 см 2 поверхности, расположенной на границе земной атмосферы перпендикулярно к солнечным лучам. В мерах теп­ловой энергии солнечная постоянная равна 2 кал/см 2 *мин, а в системе механических единиц она выражается числом 1,4-10 6 эрг/сек см 2 .

Температура фотосферы близка к 6000°С.Она излучает энер­гию почти как абсолютно черное тело, поэтому эффективную температуру солнечной поверхности можно определить с помо­щью закона Стефана-Больцмана:


где Е - количество энергии в эргах, излучаемое в 1 сек. 1 см 2 солнечной поверхности; s=5,73 10 -5 эрг/сек* град ^4 см 2 - по­стоянная, установленная из опыта, и Т - абсолютная темпера­тура в градусах Кельвина.

Количество энергии, проходящей через поверхность шара, описанного радиусом в 1 а. е. (150 10" см), равно е =4*10 33 эрг/сек * см 2 . Эта энергия из­лучается всей поверхностью Солнца, поэтому, разделив ее величину на площадь солнечной поверхности, можно определить значение Е и вычислить температуру поверхности Солнца. Полу­чается E=5800°К.

Существуют и другие методы определения температуры по­верхности Солнца, но все они разнятся по результатам их при­менения, так как Солнце излучает не совсем как абсолютно чер­ное тело.

Непосредственное определение температуры внутренних частей Солнца невозможно, но по мере приближения к его центру она должна быстро возрастать. Температура в центре Солнца вычисляется теоретически из условия равновесия давлении и равенства прихода и расхода энергии в каждой точке объема Солнца. По современным данным, она достигает 13 млн. градусов.

При температурных условиях, имеющих место на Солнце, все его вещество находится в газообразном состоянии. Так как Солнце пребывает в тепловом равновесии, то в каждой его точке должны компенсироваться сила тяжести, направленная к центру, и силы газового и светового давлений, направленные из центра.

Высокая температура и большое давление в недрах Солнца обусловливают многократную ионизацию атомов вещества и значительную его плотность, вероятно превышающую 100 г/см 3 , хотя и в этих условиях вещество Солнца сохраняет свойства газа. Многочисленные данные приводят к выводу о том, что в течение многих миллионов лет температура Солнца остается неизменной, несмотря на большой расход энергии, вызываемый излучением Солнца.

Основным источником солнечной энергии являются ядернье реакции. Одна из наиболее вероятных ядерных реакций, называемая протон-протонной, заключается в превращении четырех ядер водорода (протонов) в ядро гелия. При ядерных превращениях выделяется большое количество энергии, которая проникает к солнечной поверхности и излучается в мировое прост­ранство.

Энергию излучения можно подсчитать по известной формуле Эйнштейна: Е = тс 2 , где Е - энергия; т - масса и с - ско­рость света в пустоте. Масса ядра водорода составляет 1,008 (атомных единиц массы), поэтому масса 4 протонов равна 4 1,008 = 4,032 а. е. м. Масса образовавшегося ядра гелия сос­тавляет 4,004 а. е. м. Уменьшение массы водорода на величину 0,028 а. е. м. (это составляет 5*10 -26 г) приводит к выделению энергии, равной:

Общая мощность излучения Солнца составляет 5*10 23 л. с. Вследствие излучения Солнце теряет 4 млн. т вещества в секунду.

Солнце является также источником излучения радиоволн. Общая мощность радиоизлучения Солнца в диапазонах волн от 8 мм до 15 м невелика. Такое радиоизлучение “спокойного” Солнца исходит от хромосферы и короны и является тепловым излучением. Когда же на Солнце появляются в большом коли­честве пятна, факелы и протуберанцы, мощность радиоизлуче­ния увеличивается в тысячи раз. Особенно большие всплески радиоизлучения “возмущенного” Солнца возникают в периоды сильных вспышек в его хромосфере.

СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ И ФИЗИЧЕСКАЯ ПРИРОДА ЗВЕЗД

Разнообразные и важные сведения о физической природе звезд, которыми располагает современная астрономия, были по­лучены по результатам изучения излучаемого ими света. Изу­чение природы света производится методами фотометрии и спектрального анализа.

В середине XIX столетия французский философ-идеалист Огюст Конт утверждал, что химический состав небесных светил останется навсегда неизвестным для науки. Однако вскоре ме­тодами спектрального анализа на Солнце и звездах были от­крыты химические элементы, известные на Земле.

В наше время изучение спектров позволило не только уста­новить химический состав звезд, но также измерить их темпера­туры, светимости, диаметры, массы, плотности, скорости враще­нии и поступательных движений, а также определить расстоя­ния до тех далеких звезд, тригонометрические параллаксы которых являются по малости их недоступными для измерений.

Физическая природа звезд весьма различна, а поэтому и их спектры отличаются большим разнообразием. Звезды, как и Солнце, имеют непрерывные спектры, пересеченные темными линиями поглощения, а это и доказывает, что каждая звезда есть раскаленное газовое тело, дающее непрерывный спектр и окруженное более холодной атмосферой.

Линии звездных спектров отождествлены с линиями извест­ных на Земле химических элементов, что служит доказатель­ством материального единства Вселенной. Все звезды состоят из одних и тех же химических элементов, преимущественно из водорода и гелия.

Причина большого различия звездных спектров определяет­ся не столько различием химического состава звезд, сколько различной степенью ионизации вещества звездных атмосфер, оп­ределяемой в основном температурой. Современная классифика­ция звездных спектров, созданная на Гарвардской обсерватории (США) по результатам изучения более чем 200 000 звезд, ос­нована на отождествлении принадлежности линий поглощения известным химическим элементам и оценке их относительной интенсивности.

При всем разнообразии звездных спектров их можно объеди­нить в небольшое число классов, содержащих сходные между собой признаки и постепенно переходящих один в другой с об­разованием непрерывного ряда. Основные классы гарвардской классификации обозначены буквами латинского алфавита О, В, А, F , G , К, М, образующими ряд, соответствующий уменьше­нию температур звезд. Для детализации спектральных показа­телей в каждом классе введены десятичные подразделения, обозначаемые цифрами. Обозначению А0 соответствует типич­ный спектр класса А; А5 обозначает спектр, средний между классами А и F; A9 - спектр, гораздо более близкий к F0, чем к А0.

В таблице приведены характеристики спектров, соответствующие им температуры и типичные звезды по каждому из спектральных классов.

Спектральный класс Характеристика спектра поглощения Температура поверхности Типищые звезхы
0 Линии ионизованных гелия, 35 000° К Орпона
(голубые звезды) азота, кислорода и кремния
В Линии гелия и водорода 25000° Спика
(юлубовато-бслые
звезды)
А Линии водорода имеют мак­ 10000° Сиричс
(белые звезды) симальную интенсивность. За­
метны линии ионизованного
кальция. Появляются слабые
линии поглощения металлов
Р Линии водорода ослабевают. 7500° Проц: он
(желтоватые звезды) Интенсивны линии нейтрально­
го и ионизованного кальция.
Линии металлов постепенно
усиливаются
0 Линии водорода еще более 6000° Солные
(желтые звезды) ослабевают. Многочисленные
линии поглощения металлов
К Линии металлов очень интен­ 4500° Аркт-у-р
(оранжевые звезды) сивны. Интенсивна полоса угле­
водорода СН. Слабые линии
поглощения окиси титана ТЮг
М Линии нейтральных металлов 3500° Бетел.-
(красные звезды) очень сильны. Интенсивны по­ гейзе
лосы поглощения молекулярных
соединений

Кроме основных спектральных классов, существуют допол­нительные классы R, N, S немногочисленных звезд, температура которых ниже 3000°.

Приведенные в таблице температуры относятся к поверхностным слоям звезд, в недрах их господствуют температуры порядка 10-30 млн. градусов. Высокая температура обеспечи­вает протекание самопроизвольных ядерных реакций, т. е. про­цессов, рассмотренных ранее.

Цвет звезды зависит от ее температуры. Холодные звезды излучают преимущественно в длинных волнах, соответствующих красной части спектра, а горячие - в коротких волнах, пред­ставляемых фиолетовой частью спектра.

Человеческий глаз наиболее восприимчив к желто-зеленым лучам, и обычная фотографическая пластинка - к синим и фиолетовым лучам спектра. Вследствие этого при наблюдении звезд визуальным и фотографическим методами для одной и той же звезды получают различные звездные величины.

В астрономии цвет измеряют, сравнивая величины звезды, определенные визуально и по фотографиям, и оценивают его показателем цвета, который представляет собой разность фотографической и визуальной величин звезды:

Условно считают, что для звезд спектрального класса А 0 по­казатель цвета равен пулю. Показатель цвета более холодных звезд - величина положительная, так как они интенсивно из­лучают в длинных волнах, к которым наиболее чувствителен глаз. Показатель цвета горячих звезд - величина отрицатель­ная, поскольку их излучение по преимуществу коротковолновое, а фотопластинка наиболее восприимчива к синим и фиолетовым лучам.

Зависимости между показателями цвета и спектрами звезд устанавливаются эмпирически. Составляют таблицу, из которой по показателю цвета звезды приближенно определяют ее спек­тральный класс.

Основными факторами, определяющими количество излуча­емой энергии, являются температура и площадь излучающей поверхности звезды. Исследование спетимостей звезд привело к разделению их на две характерные группы: звезды-гиганты и звезды-карлики. Звезды-гиганты обладают высокой свети­мостью и большой площадью излучения (большим объемом), но имеют малую плотность вещества. Звезды-карлики характе­ризуются низкой светимостью, малым объемом и значительной плотностью вещества.

Различие между гигантами и карликами наиболее резко проявляется у звезд спектральных классов М и К, у которых разница в светимости достигает 9 m_ 10 m , т. е. красные гиганты в 5-10 тыс. раз ярче красных карликов. У желтоватых и желтых звезд классов F и G наряду с гигантами и карликами многочисленны также и звезды промежуточных светимостей.

Для характеристики светимостей звезд впереди прописной буквы их спектрального класса дополнительно пишутся малые буквы: g - для звезд-гигантов и d - для звезд-карликов. Ка­пелла gG0 - гигант класса G0, Солнце dG3 - карлик клас­са G3 и т. д.


СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ВОЗНИКНОВЕНИИ И ЭВОЛЮЦИИ ЗВЕЗД

Раздел астрономии, в котором изучаются вопросы происхождения и развития небесных тел, называется космогонией. Космогония исследует процессы изменения форм космической материи, приводящие к образованию отдельных небесных тел и их систем, и направление их последующей эволюции. Космого­нические исследования приводят и к решению таких проблем, как возникновение химических элементов и космических лучей, появление магнитных полей и источников радиоизлучения.

Решение космогонических проблем связано с большими трудностями, так как возникновение и развитие небесных тел про­исходит столь медленно, что проследить эти процессы путем непосредственных наблюдений невозможно; сроки протекания космических событий так велики, что вся история астрономии в сравнении с их длительностью представляется мгновением. По­этому космогония из сопоставления одновременно наблюдаемых физических свойств небесных тел устанавливает характерные черты последовательных стадий их развития.

Недостаточность фактических данных приводит к необходи­мости оформлять результаты космогонических исследований в виде гипотез, т.е. научных предположений, основанных на на­блюдениях, теоретических расчетах и основных законах природы. Дальнейшее развитие гипотезы показывает, в какой мере она соответствует законам природы и количественной оценке предсказанных ею фактов.

Выводы космогонии, приводящие к утверждению материального единства Вселенной, закономерности совершающихся в ней процессов и причинной связи всех наблюдаемых явлений имеют глубокий философский смысл и служат обоснованием научного материалистического мировоззрения.

Возникновение и эволюция звезд являются центральной проблемой космогонии.

В наблюдаемой картине строения Галактики осуществляет­ся распределение звезд по их возрастам. Помимо шаровых и рассеянных звездных скоплений, в Галактике имеются особые группы звезд, однородных по своим физическим характеристи­кам. Они открыты акад. В.А. Амбарцумяном и названы звез­дными ассоциациями. Звездные ассоциации являются неустой­чивыми образованиями, так как составляющие их звезды с большими скоростями разбега­ются в различных направлениях. Этим определяется быстрый темп их распада и непродолжитель­ность времени существования, не превышающего нескольких мил­лионов лет. Поэтому наличие звезд в ассоциации свидетель­ствует об их недавнем возникно­вении, поскольку они еще не успели выйти из ассоциации и смешаться с окружающими звез­дами.

Исследование звездных ассоциаций привело акад. В.А. Амбарцумяна к выводу о том, что звезды Галактики возникли неодновременно, что образование звезд представляет собой не­законченный процесс, продолжающийся и в настоящее время, и что звездные ассоциации являются теми местами Галактики, в которых произошло групповое формирование звезд.

В современной космогонии по вопросу о возникновении звезд существуют две точки зрения: 1) звезды возникают в процессе распада сверхплотных тел, ведущего к уменьшению плотности вещества, и 2) звезды образуются в результате гра­витационной конденсации рассеяного вещества, сопровождаю­щейся увеличением его плотности. Однако результаты наблюде­ний не позволяют в настоящее время отдать предпочтение ка­кой-либо из них.

Согласно гипотезе, предложенной акад. В. А. Амбарцумяном звезды образуются из сверхплотной дозвездной материи, выбрасываемой при взрывах, происходящих в ядрах галактик. Ядра галактик содержат небольшие по размерам тела, на много порядков превосходящие по массе звезды, отличные по своей физической природе от звезд и диффузной материи. Эти сверхплотные тела, по-видимому, представляют собой новую форму материи, неизвестную современной науке. Распад сверхплотных тел - протозвезд приводит в дальнейшем к одновременному образованию звездных групп - ассоциации. Однако В.А. Амбарцумян не рассматривает механизма превращения протозвезд в звездные группы и скопления.

Гипотеза происхождения звезд из диффузной материи была разработана некоторыми американскими учеными и другими астрономамии Сжатие разреженной газово-пылевой среды под действием сил тяготения и магнитного поля Галактики приводит к образованию отдельных сгустков, представляющих собой протозвезды - глобулы. Продолжающееся сжатие протозвезды ведет к повышению давления и температуры веенедрах. Когда температура в центре протозвезды достигает нескольких миллионов градусов, там начинаются термоядерные реакции превращения водорода в гелий, сопровождающееся выделением большого количества энергии.

С этого времени сжатие протозвезды прекращается, посколь­ку гравитационные силы уравновешиваются газовым и свето­вым давлением, сравнительно скоро протозвезда становится звездой главной последовательности диаграммы спектр-светимость. Период формирования звезды из диффузной материи зависит от массы первоначального сгущения и продолжается не более 100 млн. лет.

На главной последовательности звезда проводит большую часть времени своего существования, до тех пор пока не “вы­горит” водород в ее центральной части. Для звезды с массой, равной массе Солнца, это время составляет около 10 млрд. лет. Массивные горячие звезды излучают так много энергии, что их водорода хватает только на несколько миллионов лет. В период пребывания на главной последовательности звезда сохраняет почти неизменными радиус, температуру поверхности и светимость.

Когда выгорание водорода в ядре звезды заканчивается, давление изнутри уже не может уравновесить тяготения и ядро звезды начинает сжиматься. Сжатие ядра сопровождается по­вышением температуры. Возрастающее излучение расширяет оболочку звезды, увеличивает ее светимость. Дальнейшая эволюция звезды зависит от ее массы. Большинство ученых счи­тает, что звезды небольшой массы, сравнимой с солнечной, превращаются в белых карликов.

Эволюция звезды в случае ее возникновения в результате распада сверхплотной протозвезды должна иметь иной харак­тер, поскольку после образования звезды в ее недрах еще сох­раняется часть сверхплотного дозвездного вещества. О его на­личии может свидетельствовать, например, резкое изменение блеска вспыхивающих неправильных переменных звезд. Процесс вспышки напоминает взрыв и может быть объяснен выносом дозвездного вещества из недр звезды на ее поверхность, сопровождающимся освобождением больших количеств эгергии.

При любом характере эволюции происходит изменение хими­ческого состава звезды в результате образования в ее недрах более тяжелых химических элементов.

В процессе своей эволюции звезда непрерывно теряет массу не только за счет излучения, но и путем рассеяния вещества своей атмосферы, что является одним из источников пополне­ния межзвездной диффузной материи.


ОПРЕДЕЛЕНИЕ РАССТОЯНИЙ И РАЗМЕРОВ ГАЛАКТИК

Во второй половине XVIII века помимо звезд было заме­чено на небе немало неподвижных туманных пятен - ту­манностей. Природа большинства их долгое время оставалась спорной. Только в середине 20-х годов нашего столетия выяснилось, что большинство их представляет собой грандиозные звездные системы, по своим размерам сравнимые с нашей Галактикой. Поэтому они получили название галактик.

Совокупность всех галактик составляет наибольшую известную нам систему, называемую Метагалактикой. До ее границ мы не добрались еще, и имеет ли она центр - неизвестно.

Эта проблема была кардинальной для выяснения вопроса о природе таких туманных пятен и об их месте во Вселенной, центр которой человек перенес с Земли сна­чала к Солнцу, затем к центру нашей Галактики,

До середины XX века галактики многими считались небольшими объектами, находящимися внутри нашей Га­лактики наряду со звездными скоплениями и газовыми туманностями. Считали даже в 20-х годах, что это линзы, состоящие из пыли и освещенные изнутри одной яркой звездой в их центре. Путь к определению расстоянии открыли сотрудники Гарвардской обсерватории, а затем Лундмарк и Хаббл. Первые из них установили, что в Магеллановых Облаках, выглядящих как обрывки Млечного Пути, видно много цефеид - периодических переменных звезд, у которых период изменения блеска растет с их видимым блеском. Вокруг Магеллановых Облаков цефеид практически не было видно, и было ясно, чтоих видимая концентрация в Облаках есть результат пространствен­ной концентрации в них цефеид, а различия их видимого блеска соответствуют различиям в их истинной силе света - в светимости. Так было открыто важнейшее свойство цефеид, оказавшееся справедливым везде, а именно существование соотношения период - светимость. Установив (с трудом из-за их дальности от нас) светимости бли­жайших к нам цефеид разного периода, можно было из сравнения их видимого блеска в нашей Галактике и в Магеллановых Облаках установить, во сколько раз последние от нас дальше, чем ближайшие к нам цефеиды. Ока­залось, что Магеллановы Облака находятся за пределами нашей Галактики. Линейный размер их, определяемый по видимому угловому размеру и уже известному теперь расстоянию, оказался в несколько раз меньше нашей Галактики, но все же они представляют собой гигантские звездные системы. Они содержат миллионы звезд, газовые туманности и сотни звездных скоплений, сходных с нашими. Магеллановы Облака были первыми системами, открытыми за границей нашей Галактики. Но они имеют неправильную клочковатую форму, и это еще ни­чего пока не говорило о природе самых интересных ту­манностей спирального вида.

Только в ближайших к нам галактиках можно среди ярчайших звезд распознать цефеиды и, определив их пе­риоды, найти их расстояние более точно, чем по новым звгздам.

В 1924 г. Лундмарк и Виртц обнаружили по неболь­шому числу измеренных уже спектрально (по принципу Доплера - Физо) лучевых скоростей, что галактики уда­ляются от нас по всем направлениям и тем скорее, чем они дальше от нас. Скорость этого удаления Хаббл определил около 1930 г. в 550 км/с на каждый мегапарсек расстояния, и поэтому открытие красного смещения при­писывается обычно ему. Непрерывные проверки эффекта, глав­ным образом за счет увеличения шкалы расстояний до ближайших галактик, к настоящему времени довели по­стоянную Хаббла до значений около 50 км/(с Мпс), но большинство астрофизиков все еще предпочитает пользоваться более ранним определением Но = 75 км/(с Мпс), быть может, выжидая, когда уляжется волна новых ре­зультатов, колеблющихся между 100 и 50 км/(с Мпс).

Строение и свойства галактик

Эти параметры являются важнейшими характери­стиками звездных систем.

Массы индивидуальных галактик устанавливают, опре­деляя кривую их вращения, которая в центральной обла­сти близка к твердотельной; затем происходит постепен­ный переход к вращению по закону Кеплера, когда расстояния от центральной массы уже велики, окружаю­щая точку плотность мала и сравнительно мала масса внешней области. Кривые вращения получают оптиче­ским методом, располагая щель спектрографа вдоль видимой большой оси изображения галактики, причем успех тем больше, чем ближе плоскость ее вращения к лучу зрения. Измерения ограничиваются центральной, яркой частью галактики и дают лишь нижний предел ее массы.

Детальная интерпретация кривой вращения п нахож­дение па нее распределения плотностей р внутри галак­тики требуют дальнейшего уточнения. Для этого необхо­димо принять модель галактики: плоскую или модель в виде неоднородного сфероида, в котором поверхности постоянной плотности - подобные сфероиды, или еще более сложную форму.

Массы плоских систем начинаются при­мерно с 10^11 (в степени 11) Â и уменьшаются до масс звездных ско­плении.


где V – круговая скорость в кеплеровской кривой;

R – радиус; G – гравитационная сила.

Массы эллиптических и массы спиральных галактик можно оцепить в случае пар - двойных галактик, у ко­торых разность глобальных скоростей можно предпола­гать равной скорости обращения, как у спектрально-двойных звезд. Однако здесь остается неизвестным угол наклона орбиты, и кривую скоростей определить нельзя. Мы получаем лишь нижний предел суммы масс двух га­лактик, как в случае спектрально-двойных звезд.

Выше было освещен ряд относящихся сюда вопросов, но надо добавить еще многое.

Форма спиральных ветвей, как оказалось, хорошо со­ответствует логарифмической спирали

r = r(0) ехр (ca),

где a =pj:180 и c = сtgm, или

lg r =lg r(0)+ccj,

где с =(p/180)*lg e=0,00758.

Здесь m - характеристический угол между радиусом-вектором точки спирали и касательной к ней. Конечно, тут имеется ввиду истинная форма ветвей в их плоско­сти, а не форма, искаженная проекцией. В среднем m = 73° и варьирует в пределах 54-86°. Первое значе­ние соответствует широко раскрытым ветвям, второе от­носится к спиралям, приближающимся к окружности.

Бывает, что ветви имеют несколько различные формы. Встречаются галактики с тремя-четырьмя ветвями и та­кие, у которых есть ветви внутренние и внешние, или “многорукавные”. Вернее сказать, у последних ветви не сплошные, а состоят из дуг, не связанных друг с другом. Двух- и даже трехъярусные спиральные галактики свидетельствуют о сложности этих явлений природы. Еще ранее Хаббл обнаружил, что есть галактики с “перекладиной” - по-английски “бар”,- в центре которой находится их ядро, а спиральные ветви отходят от концов бара, но есть и такие, в которых ветви отходят от середины бара; пос­ледние представляют трудность для теории, считающей ветви “истечением” из бара. Обнаружено течение газа от ядра вдоль бара со скоростями до 100 км/с. В области спиральных ветвей в большинстве случаев вращение близко к твердотельному, и точка пе­региба на кривой вращения находится там, где ветви уже не прослеживаются, хотя свечение системы тянется еще далеко. Нередко ветви отходят не от бара, а от перифе­рии кольца, для которого бар является диаметром.

Много дебатов вызывал вопрос о направлении враще­ния галактик - идет ли оно так, что ветви при этом “волочатся” или, наоборот, “разматываются”. Это важно для теории их происхождения. Острота вопроса сглади­лась, когда обнаружили галактики, имеющие одновременно ветви противоположных направ­лений, т.е. одни “волочащиеся”, другие “разматываю­щиеся”. Если вращение почти твердотельно, то нет по­мех для возникновения ветвей любой формы.

Хаббл ввел обозначения для простых спиралей - S, для “пересеченных спиралей” (с баром) - SВ. Для про­межуточных форм (очень короткий бар) вводились обо­значения SАВ или другие. Неправильные галактики он обозначал через I или Ir, но су­ществует две их разновидности. Эллиптические галактики по Хабблу обозначаются буквой Е с прибавлением цифры от 1 до 7, которая указывает степень сжатия, определяе­мую отношением

где а и b - видимые диаметры (обычно искаженные для нас проекцией). Потом он нашел “линзовидные” галак­тики с “балджем” (большим ядром), окруженным диском, в котором спиралей нет. Он их обозначил S0. Дальней­шие наблюдения показали, что классификация Хаббла не отражает всего многообразия существующих форм и свойств галактик, и было предложено несколько других классификаций, еще быстрее “отстававших от жизни”, и мы на них останавливаться не будем.

Хаббл ввел еще следующие важные дополнения. Сей­час им приходится придавать другой, более глубокий смысл, чем предполагал Хаббл. Аморфные, бесструктур­ные спиральные ветви, не содержащие сверхгигантов и бедные газом, отмечаются приставкой а(Sа). Очень клочковатые ветви с множеством горячих звезд-гигантов и бо­гатые газовыми туманностями - приставкой с(Sс), а спирали промежуточного вида отмечаются приставкой b(Sb). Такова М 31 (Sb), а М 33 есть Sс. Наша Галактика может относиться к типу Sbс - промежуточная спираль. У Sс ядра значительно меньше, чем у Sb. Но у Sа, вопреки мнению Хаббла, они бывают разными.

После многих попыток теоретически объяснить суще­ствование спиральных галактик при наличии не строго твердотельного вращения очень популярной стала тео­рия, основы которой заложили Лин и Шу в 60-е годы.

Большой интерес представляет знание того, как галактики распределяются по светимостям, что в некоторой степени отражает их распределение и по массе, так как при одинаковом составе входящих в них звезд масса пропорциональна светимости. Это положение более оправдано для однотипных галактик, в особенности дтя эллиптических, у которых нет большого различия ни в структуре, ни в цвете. Но сперва пытались получить об­щую картину для всех типов галактик вместе, и тогда казалось, что карликовых галактик с абсолютной величиной М = - 16 (в степени m) и меньше мало. Но потом открыли довольно много очень слабых и мелких галактик в окрест­ностях нашей Галактики.

Пространственную структуру галактик типов Е и S0 можно узнать, вычисляя пространственные плотности в функции радиуса из результатов точной фотометрии их поверхностной яркости. Яркость, измеренная в точках вдоль видимого радиуса, создается излучением всех звезд, лежащих на луче нашего зрения - на хордах сфероида. От яркости в проекции можно перейти при условии наличия центральной симметрии к объемной яркости.

Строение Метагалактики, скопления.

Отдельные галактики часто объединены в пары сравни­мых друг с другом систем или состоят из одной большой галактики и одного или даже нескольких спутников с меньшими светимостью, размерами и массами.

Можно заметить и немногочисленные группы галак­тик. Некоторые из них, чаще часть их членов,- лишь случайные проекции галактик, расположенных ближе или дальше. Наиболее тесными парами и группами с члена­ми, безусловно связанными друг с другом физически, яв­ляются взаимодействующие системы - гнезда и цепочки систем.

Наконец, существуют скопления галактик как бедные и рассеянные, так и богатые, концентрирующиеся к цен­тру скопления сотен и многих тысяч галактик.

Много усилий прилагается к попыткам обнаружить скопления галактик - системы, которые стали бы едини­цами высшего порядка в качестве “кирпичей” Метагалак­тики. Реальное существование их пока не доказано

В скоплениях сильно преобладают эллиптические Е и линзовидные галактики S0, а в общем поле между ни­ми многочисленны спирали.

Двойные галактики. Хольмберг в Швеции составил каталог двойных и кратных галактик в количестве около 8007, но, к сожалению, современным требованиям он не удовлетворяет. Во всяком случае, гипотезу Хольмберга, что двойные галактики возникают в результате грави­тационного захвата, надо оставить. По современным представлениям пары, группы и скопления галактик, как та­ковые, возникали на ранних стадиях их образования.

И. Д. Караченцев ввел понятие об изолированных галактиках, видимое расстояние между которыми в пять или более раз меньше расстоя­ния до другой ближайшей галактики, и составил каталог 603 пар.

Надо заметить, что в любом каталоге таких галактик нет сведений о расстоянии от нас до каждой компоненты, и потому нет уверенности в реальной близости их компо­нент друг к другу. Поэтому И. Д. Караченцев и другие астрономы упорно работаюли над определением красного смещения компонент. Из них они находят и разности скоростей компонент, помогающие оценить мас­су систем и отношение у них массы к светимости.

Масса пары галактик пропорциональна квадрату раз­ности их скоростей (предполагается, что их движение орбитально) и расстоянию между компонентами. Но мы не знаем наклона к лучу зрения орбиты и длины линии, соединяющей компоненты, и поэтому пользуемся средни­ми, вероятнейшими их величинами. Пейдж в США, полу­чивший скорости многих пар, показал, что массы, опре­деленные этим методом, на порядок больше масс, которые могли бы быть найдены из изучения вращения галактик или дисперсии скоростей в них. Более точные измерения скоростей в САО на 6-метровом телескопе это различие в определении масс устраняют. Половина “изолированных пар” состоит из взаимодействующих галактик. По Уайту типичный орбитальный период в парах составляет 200 10 6 лет, а типичное расстояние между ними около 40 кпс. До 15% всех галактик входит в пары, но пока еще трудно уточнить процент оптических пар вследствие случайной проекции. Эксперименты И.Д. Караченцева и А. Л. Щербановского с использованием ЭВМ показали, что оптических пар только около 10%, но число это за­висит от условий определения понятия двойственности.

Группы. Хольмберг выделял из поля тройные и крат­ные галактики. Как ни определять их, число объектов быстро убывает с переходом ко все большей кратности. С другой стороны, выделяют группы галактик; например, Вокулер дал список 54 групп и их членов. Но эти весьма обширные группы содержат до десятков членов, перехо­дя, вероятно, в бедные скопления, бедные скопления пе­реходят в богатые, состоящие из сотен, а может быть, десятков тысяч членов. Почти ни для одной группы, даже малочисленной, нет сведений о лучевой скорости каждо­го члена. Из нескольких данных часто можно сделать заключение, что, применив теорему о вириале, мы полу­чим положительную энергию, указывающую на неустой­чивость группы. В. А. Амбарцумян трактует это как признак молодости таких групп и считает их мо­лодыми.

Другие астрономы не согласны с ним и полагают, что все группы должны быть устойчивы, а это требует при данных скоростях членов большей массы; поэтому и го­ворят о “скрытой массе”. Группы Вокулера содержат в некоторой неизвестной мере галактики, лишь проектирующиеся на группу. Я. Э. Эйнасто считает, что у гигант­ских галактик есть громадное гало (как у М 87) и они-то и представляют “скрытую массу”. Однако, чем больше членов в системе, тем больше должна быть “скрытая масса”, так что вклад корон был бы совершенно недоста­точным, но в распространенность корон астрономы не верят, и в общем проблемы устойчивости групп и суще­ствования “скрытых масс” еще не решены.

Самыми бесспорными и наиболее интересными груп­пами являются гнезда взаимодействующих галактик; сре­ди последних к наименее тесным относится Квинтет Сте­фана из пяти галактик. Но и в нем, как в цепочке VV 172 и некоторых других, есть член с аномальным красным смещением. Арп предполагает, что такие группы выбро­шены из больших галактик.

Скопления галактик. Ближайшее к нам скопление галактик, скорее, облако их, включающее много больших и ярких спиралей, содержащих газ и пыль, отстоит на нас на 12 Мпс и находится в скоплении Девы. Подобное же близкое облако находится в Большой Медведице. Каждое из них содержит сотни галактик. Но больший интерес представляют богатые шаровые скопления галактик, кон­центрирующиеся к своему центру. Ближайшее из них - в Волосах Вероники, отстоящее от нас на 70 Мпс, содер­жит за единичными исключениями эллиптические Е и линзовидные галактики S0, в которых газа или совсем нет или мало. Число галактик в скоплениях такого “пра­вильного” типа устанавливается лишь до какой-либо предельной видимой звездной величины. Ярчайшие члены правильных скоплений являются гигантскими галактика­ми и неизменность этих величин использу­ется для оценки расстояния до очень далеких скоплений, определение красного смещения которых невозможно по техническим причинам. Цвикки регистрировал скопления с числом видимых членов не менее 50. В больших, кон­центрированных скоплениях, ближайших к нам, насчи­тывается более 10000 членов. Установление принадлеж­ности к скоплению отдельных членов по красному смеще­нию при большом числе членов представляет чрезвычайные трудности. Подсчеты членов скопления в функции расстояния от центра делают, вычитая из плотности га­лактик скопления плотность галактик фона неба побли­зости. Так, установлено, что в богатых правильных скоп­лениях ход числовой плотности на площади сходен с хо­дом числа частиц в изотермическом газовом шаре в функции расстояния от центра.

Беря же более широкие окрестности, Л. С. Шаров показал наличие в скоплениях галактик плотного ядра и обширной короны; кроме того, наблюдается сегрегация некоторых типов галактик, например сильнее концентри­рующихся к центру. Наибольшее число красных смеще­ний (около 50) измерено в скоплении Кома. В таких случаях по дисперсии скоростей членов можно оценить массу; ее можно оценить также по функции светимости галактик в скоплении, нормализуя ее и зная связь све­тимости с массой для эллиптических галактик. Массы богатых скоплений составляют 10 14 масс Солнца (и больше).

Неожиданное компактное скопление открыла Р. К. Шахбазян. Оно оказалось состоящим из дюжины компактных галактик. Расстояние до него равно 700 Мне, а размер - всего 350Х180 кпс. Дисперсия лучевых скоростей в нем необъяснимо мала: 62 км/с. Шахбазян и Петросян от­крыли затем в Бюракане еще десятки подобных по виду скоплений, но они еще не исследованы.

Очень трудно выделить в скоплениях карликовые чле­ны, в частности, рассеянные бедные сфероидальные га­лактики типа Печи и Скульптора, так как последние плохо видны из-за малой поверхностной яркости, а другие трудно отличить от галактик далекого фона. Каталог таких галактик типа Скульптора составила и исследовала В. Е. Караченцова.

Длительные поиски привели к заключению, что лишь в немногих скоплениях имеется крайне слабое общее свечение, создаваемое, вероятно, карликовыми галакти­ками. С другой стороны, в них рассеяно небольшое коли­чество пыли, заметно поглощающей свет.

Нейтральный водород в скоплениях не обнаружен, но есть радиоизлучение, идущее от существующего по гипо­тезе Б.В. Комберга горячего газа в коронах гигантских членов скопления. Было найдено в скоплениях и рент­геновское излучение, особенно сильное от радиогалактики NGC 1275 в скоплении Персея. Эйбелл на Паломарском атласе неба нашел 2712 очень богатых скоплений, а Цвикки по тому же материалу выявил и оконтурил десятки тысяч скоплений с числом членов не менее 50 и кратко классифицировал их.

Эти данные служат материалом для огромного числа попыток обнаружить скопления скоплений, иначе сверх­скопления. Некоторые авторы их не усматривают, другие считают, что нашли, третьи полагают, что сами определе­ния этого понятия различны. Те, кто считает, что сверх­скопления найдены, находят в их составе всего три - четыре скопления, что следовало бы называть лишь кратной галактикой, в ранг же скоплений зачисляют си­стемы, содержащие хотя бы десятки звезд. Поэтому автор считает, что пока еще скопления скоплений не обнару­жены, хоть могут существовать. Его мнение разделяет, по-видимому, и Эйбелл, ранее выделявший такие сверх-скоплеиия. Статистические методы, применяемые в этих поисках, вынуждены опираться на каталог Цвикки, даю­щий контур скопления. Границы даже простых скоплении определены очень ненадежно. Б. И. Фесенко считает, что при таких работах сильное искажение вносит неучиты­ваемое влияние клочковатости межгалактического погло­щения света в пашей Галактике. Ему также кажется сомнительным утверждение Вокулера, что ближайшие к нам облака и группы скоплений (ближе 5 Мпс) образуют уплощенное сверхскоплепие с центром в скоплении Девы.

Некоторые частные случаи поздней эволюции галактик

За последние годы многократно пытались создать модели звездного состава галактик, которые бы отвечали наблю­даемым интегральным спектрам ярких (центральных) областей спиральных и эллиптических галактик. (Получить хорошие спектрограммы слабо светящихся, но об­ширных частей галактик, диска и спиральных ветвей по­ка не удается.) В модели должна быть подобрана такая смесь звезд разных спектров и светимостей, чтобы она при взятых пропорциях их числа давала спектр, сходный с наблюдаемым. Получается, что эти области галактик должны содержать больше красных карликов, чем звезды вблизи Солнца. Модели эти пока еще не вполне совер­шенны. Поэтому, даже если числовые данные теории для разных стадий эволюции различных звезд верны, расчеты эволюции суммарного звездного состава галактик нельзя еще апробировать с уверенностью. В. А. Амбарцумян, сопоставляя видимую неустойчивость мелких групп и скоплений галактик с существованием активности ядер, пришел к мысли о вероятности ранней фрагментации дозвездного вещества, превращения его в разлетающиеся системы звезд в ассоциациях и галактик в группах. Та­кую дисперсию вещества вместо его конденсации он считает происходящей и в современную эпоху.

Более распространена идея конденсации диффузного вещества в звезды, восходящая к гипотезе Гершеля. За последние годы эта гипотеза развилась в теорию звездо­образования при движении в газе ударной волны сжатия. Звездообразование в нашу эпоху связывается с наличием молодых горячих звезд в области движения и сжатия холодных газов с пылью. Но системы самих галактик от­носятся к очень давней эпохе эволюции Метагалактики, и все группы галактик и их спутники считаются возник­шими лишь давным-давно.

В противоположность этому изучение взаимодействия галактик привело автора данного обзора к убеждению, что иногда на периферии плоских галактик, в частности на конце спиральной ветви, возникают сгущения массы и свечения, которые отделяются несколько от спиральной ветви и из части спиральной галактики превращаются тем самым в ее спутника. Массы их варьируют от массы небольшой области Н I I до массы, сравнимой с массой галактики-родительницы, как, например, в общеизвестной системе М51. Приливная теория готова приписать приливам от уже существовавшего спутника само возникновение спиральных ветвей, но большинство подобных спутников так малы по массе, что не в состоянии создать требуемых мощных приливных сил. Повидимому, фраг­ментация происходит и в гнездах и в цепочках галактик, которые должны быть неустойчивы уже из-эа своей формы. В исследованных к 1980 г. случаях внутренние скорости компонент оказались удивительно малыми.

СПИСОК ЛИТЕРАТУРЫ

2. Воронцов-Вельяминов Б. А., 1978 - Внегалактическая астрономия,

2-е изд.- М.: Наука.

3. Происхождение и эволюция галактик и звезд/ Под ред. С.Б. Пикельнера.- М.: Наука, 1976.

4. Проблемы современной космогонии/Под ред. В. А. Аябарцумяна.-М.: Наука, 1969.

5. Бербидж Дж., Бербидж М., 1969 - Квазары.- М.: Мир.

6. Строение звездных систем/Под ред. П. Н. Холоиова.-М.: ИЛ, 1962.

7. Зельдович Л. Б., Новиков И. Д., 1967 - Релятивистская астрофизи­ка.- М.: Наука.

8. Звезды и звездные системы./Под. ред. Д.Я. Мартынова.-М.: 1981 г.

9. Волынский Б.А. , Астрономия.-М.: 1971 г.

Слайд 2

Повторим пройденную тему

Что используется в качестве базиса при определении годичных параллаксов звезд? Какие единицы применяют при измерении расстояний до звезд? Каково соотношение между этими единицами? Сколько времени пришлась бы лететь к Проксиме Кентавра космическому кораблю, способному развивать скорость 17 км/с?

Слайд 3

Цвет и температура звезд

Цвет звезды свидетельствует о ее температуре. Солнце (6000 К) -желтая звезда Бетельгейзе (4000 К) – красная звезда Сириус (10000 – 20000) –белая звезда

Слайд 4

Спектр и химический состав звезд

Видимая поверхность звезды – фотосфера. Температура фотосферы связана с такой характеристикой звезды, как спектральный класс. Всего основных семь классов: O, B, A, F, G, K, M

Слайд 5

Слайд 6

Самые высокие температуры имеют голубые звезды, они же обладают наибольшей светимостью. Следовательно, на нашей диаграмме их следует поместить в левом верхнем углу. Красные карлики расположатся в нижнем правом углу, у них маленькая температура и низкая светимость. Солнце расположится ближе к середине диаграммы. Видно, что все звезды, о которых мы говорим, располагаются вдоль одной линии. Эту линию принято называть Главной последовательностью.

Слайд 7

Слайд 8

Светимость звезды (L)

Светимостью называют мощность излучения световой энергии по сравнению с мощностью излучения света Солнца

Слайд 9

(М© – М) L = 2,512 М© = 5 М = - 9 (гиганты) м = + 17 (карлики)

Слайд 10

Радиусы звезд

Сверхгиганты превышают размеры Солнца в сотни раз (Антарес); Гиганты – превышают размеры Солнца в десятки раз; Карлики – по размерам близки к Солнцу


Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Южно-Уральский государственный университет»

Факультет «Экономики и управления»
Кафедра «Мировой экономики и экономической теории»

Природа и состав звезд

Реферат

По дисциплине «Концепции современного естествознания»

                  Проверил
                  Доцент кафедры Физическая химия
                  Тепляков Юрий Николаевич
                  Автор работы
                  студентка группы 236
                  Глушко Ольга
Аннотация

Цель реферата – изучить природу и состав звезд. В соответствии с выбранной темой поставлены следующие задачи:

    Рассмотрение понятия, параметров и классификаций звезд.
    Описание эволюции звезд.
    Изучение звездных скоплений и ассоциаций
    Изучение состава звезд.

Введение………………………………………………………… …………………4

    Понятие звезд, их параметры и классификация…………………………….5
    Эволюция звезд………………………………………………………………. .9
    Звездные скопления и ассоциации...…………….……………...……… …..13
    Химический состав звезд…………………………………………………….18
Заключение…………………………………………………… …………….….....21
Приложения…………………………………………………… ………….………22
Библиографический список……………………………………………………... 24

Введение

Наука о звездах – астрономия – одна из самых древних, ведь эти загадочные небесные тела всегда интересовали человека. Как и все тела в природе, звёзды не остаются неизменными, они рождаются, эволюционируют, и, наконец «умирают». Чтобы проследить жизненный путь звёзд и понять, как они стареют и что собой представляют, необходимо знать, как они возникают и что из себя представляют.
Актуальность исследования звезд возрастает с каждым днем, что связано с расширением горизонта знаний человечества о космосе и внеземных формах жизни. Вселенная состоит на 98% из звезд. Они же являются основным элементом галактики.

1.Понятие и классификация звезд

Звезды – это массы светящегося газа, более или менее равномерно разбросанные по небу (хотя иногда они образуют группы), которые мы можем наблюдать на ночном небе как маленькие точки. Звезды - это основные тела Вселенной, в них сосредоточено более 90 % наблюдаемого вещества.

Основными параметрами звёзд являются:

    масса,
    светимость (полное количество энергии, излучаемое звездой в единицу времени L),
    радиус,
    температура поверхности.
Масса звезд
Масса звезды приобрела большую значимость, когда были открыты источники энергии звезд. Масса Солнца М с = 2 10 30 кг, а массы почти всех звезд лежат в пределах 0,1 - 50 массы Солнца. Практически наиболее верным способом определения массы звезды являются исследования движений двойных звезд. Оказалось, что положение звезды на Главной последовательности определяется ее массой

Светимость
Светимость звезды L часто выражается в единицах светимости Солнца, которая равна 3,86 10 26 Вт. По своей светимости звезды очень сильно различаются. Есть звезды белые и голубые сверхгиганты (их, правда, сравнительно немного), светимости которых превосходят светимость Солнца в десятки и даже сотни тысяч раз. Но большинство звезд составляют «карлики», светимости которых значительно меньше солнечной, зачастую в тысячи раз. Характеристикой светимости является так называемая «абсолютная величина» звезды. Абсолютная звёздная величина (M ) для звёзд определяется как видимая звёздная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой – от расстояния до нее. Абсолютная звездная величина Солнца во всем диапазоне излучения M = 4,72. Звезды высокой светимость имеют отрицательные абсолютные величины, например -4, -6. Звезды низкой светимости характеризуются большими положительными значениями, например +8, +10.

Радиус
Используя самую современную технику астрономических наблюдений, удалось в настоящее время непосредственно измерить угловые диаметры (а по ним, зная расстояние, и линейные размеры) лишь нескольких звезд. В основном астрономы определяют радиусы звезд другими методами. Один из них дает формула.
Определив радиусы многих звезд, астрономы убедились в том, что существуют звезды, размеры которых резко отличаются от размеров Солнца. Наибольшие размеры у сверхгигантов. Их радиусы в сотни раз превосходят радиус Солнца. Например, радиус звезды а Скорпиона (Антарес) не менее чем в 750 раз превосходит солнечный. Звезды, радиусы которых в десятки раз превосходят радиус Солнца, Называются гигантами. Звезды, по размерам близкие к Солнцу или меньшие, чем Солнце, относятся к карликам.
Радиус звезд – непостоянная величина. Он может изменяться, например как у Бетельгейзе, чей радиус за последние 15 лет уменьшился на 15%.
Температура
Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхности слоев звезд 3-4тыс. К., то ее цвет красноватый, 6-7 тыс. К. – желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К. имеют белый или голубоватый цвет. У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений. По мере увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К. линии ионизированного кальция, расположенные на границе видимой и ультрафиолетовой части спектра. Заметим, что такой вид I имеет спектр нашего Солнца.

Классификация звезд
Классификации в любой области науки могут быть как искусственными (по каким-то отдельным признакам, которые легко определяются), так и естественными, т.е. отражающими суть объекта, его комплексную характеристику, происхождение и т.п., хотя принадлежность к тому или иному классу в этом случае не всегда легко определяется. Объекты могут объединяться как в реально существующие группы (по качественным признакам), так и в условные группы, отличающиеся только количественно. Современная звёздная астрономия демонстрирует нам все эти случаи.
Классификации звезд начали строить сразу после того, как начали получать их спектры. В первом приближении спектр звезды можно описать как спектр чёрного тела, но с наложенными на него линиями поглощения или излучения. По составу и силе этих линий, звезде присваивался тот или иной определённый класс. Так поступают и сейчас, однако, нынешнее деление звезд гораздо более сложное: дополнительно оно включает абсолютную звездную величину, наличие или отсутствие переменности блеска и размеров, а основные спектральные классы разбиваются на подклассы.
Наиболее известной и общей является классификация на основе цвета, размера и температуры звезды . Астрономы разделяют звезды на различные спектральные классы. Спектральная классификация, разработка которой началась в XIX веке, первоначально была основана на интенсивности линий поглощения водорода. Классы, которые наилучшим образом описывают температуру звезд, используются и в настоящее время. Типичные спектры для семи основных спектральных классов – OBAFGKM. Оказывается, что голубые звезды спектрального класса О - это самые большие звезды. Они превосходят Солнце в более чем сорок раз по массе, в двадцать раз по размерам и в миллион раз ярче Солнца. Следующими по шкале звездных масс идут белые звезды спектральных классов В и А. Далее следуют желто-белые звезды класса F и желтые звезды класса G, подобные нашему Солнцу. Звезды меньшей массы более тусклые и меньше по размеру. Массы и размеры оранжевых звезд, относящихся к классу К, составляют около трех-четвертых от массы Солнца. Звезды класса М самые холодные и имеют густой оранжево-красный цвет. Типичные представители этого класса примерно в пять раз меньше Солнца по массе и радиусу и в два раза ниже по температуре поверхности, которая составляет порядка 3000 К. Около сотни таких звезд будут иметь такую же светимость как наше Солнце. На классе М заканчивается гарвардская классификация звезд.
В самом начале ХХ века датский астроном Герцшпрунг и американский астрофизик Рессел обнаружили существование зависимости между температурой поверхности звезды и ее светимостью. Эта зависимость иллюстрируется диаграммой, по одной оси которой откладывается спектральный класс, а по другой абсолютная звездная величина. Вместо абсолютной звездной величины можно откладывать светимость в логарифмической шкале, а вместо спектральных классов непосредственно температуру поверхности. Такая диаграмма называется диаграммой спектр-светимость или диаграммой Герцшпрунга – Рессела. При этом температуру откладывают в направлении справа налево, чтобы сохранить старый вид диаграммы, возникший еще до того, как была изучена зависимость цвета звезды от температуры ее поверхности.
Если бы между светимостями и их температурами не было никакой зависимости, то все звезды распределялись на такой диаграмме равномерно. Но на диаграмме обнаруживаются несколько закономерностей, которые называют последовательностями. Положение каждой звезды в той или иной точке диаграммы определяется ее физической природой и возрастом (стадией эволюции). Звезда не находится в течение всей своей жизни на месте, а перемещается по диаграмме Г-Р. Поэтому на диаграмме Г-Р как бы запечатлена вся история рассматриваемой совокупности звезд. Анализ это диаграммы позволяет выделить различные группы звезд, объединенные общими физическими свойствами. Наиболее богатую звездами диагональ, 90 % всех звезд, идущую из верхнего левого угла в правый нижний, называют главной последовательностью. Именно вдоль нее расположены звезды, о которых мы с вами говорили выше. В настоящее время выяснилось, что звезды главной последовательности – нормальные звезды, похожие на Солнце, в которых происходит сгорание водорода в термоядерных реакциях. Главная последовательность – это последовательность звезд разной массы. Самые большие по массе звезды располагаются в верхней части главной последовательности и являются голубыми гигантами. Самые маленькие по массе звезды – карлики. Они располагаются в нижней части главной последовательности. (см. рис.№1)
Существующие в природе звезды имеют более широкие диапазоны параметров, нежели звезды главной последовательности. Такие звезды мы наблюдаем на диаграмме Г-Р вне зоны главной диагонали. Они также образуют последовательности, т.е. в этих группах тоже существуют определенные зависимости между светимостями и температурами, разные для каждой группы. Эти группы названы классами светимости. Их всего семь. А именно: I-сверхгиганты (звезда, находящая в преддверии вспышки сверхновой звезды), II-яркие гиганты (звезды, лежащие между гигантами и сверхгигантами ), III-гиганты, IV – субгиганты (бывшая звезда главной последовательности, подобная Солнцу или несколько более массивная, чем Солнце, в ядре которой иссякло водородное топливо.), V- звезды главной последовательности, VI- субкарлики (это звёзды тускнее звёзд главной последовательности того же спектрального класса . ), VII- белые карлики (звезды, меньше Солнца).
(см. рис.№2; табл.№1)
2. Эволюция звезд

Эволюция звезд - это изменение со временем физических характеристик, внутреннего строения и химического состава звезд. Современная теория эволюции звезд способна объяснить общий ход развития звезд в удовлетворительном согласии с данными наблюдений.
Ход эволюции звезды зависит от ее массы и исходного химического состава, который, в свою очередь, зависит от времени, когда образовалась звезда и от ее положения в Галактике в момент образования.
Ранняя стадия эволюции звёзды очень не велика и звезда в это время погружена в туманность, поэтому протозвезду очень тяжело обнаружить.
Звезды образуются в результате гравитационной конденсации вещества межзвездной среды. К молодым относятся звезды, которые еще находятся в стадии первоначального гравитационного сжатия. Температура в центре таких звезд недостаточна для протекания ядерных реакций, и свечение происходит только за счет превращения гравитационной энергии в теплоту.
Гравитационное сжатие - первый этап эволюции звезд. Он приводит к разогреву центральной зоны звезды до температуры «включения» термоядерной реакции (примерно 10-15 млн К) - превращения водорода в гелий (ядра водорода, т.е. протоны, образуют ядра гелия). Это превращение сопровождается большим выделением энергии. Так как количество водорода ограничено, рано или поздно он выгорает. Выделение энергии в центре звезды прекращается, и ядро звёзды начинает сжиматься, а оболочка разбухать. Чем массивнее звезда, тем большим запасом водородного топлива она располагает, но для противодействия силам гравитационного коллапса ей приходится сжигать водород с интенсивностью, превосходящей по темпу роста темп роста запасов водорода по мере увеличения массы звезды. Таким образом, чем массивнее звезда, тем короче время ее жизни, определяемое исчерпанием запасов водорода, и самые крупные звезды в буквальном смысле сгорают за десятки миллионов лет. Самые мелкие звезды, с другой стороны, «безбедно» живут сотни миллиардов лет. Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород.
Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Что будет дальше зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчиваю свою жизнь весьма банальным образом. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх - и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, наконец, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий - своего рода «пепел» затухающей первичной реакции нуклеосинтеза - вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, - один из ключевых моментов жизненного цикла звезд.
При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. В частности, оболочка Солнца на этой стадии жизни расширится за пределы орбиты Венеры. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через большую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.
Далее если звезда меньше 1,2 массы солнца, она сбрасывает наружный слой (образование планетарной туманности). После того, как от звёзды отделяется оболочка, открываются её внутренние очень горячие слои, а оболочка тем временем отходит всё дальше. Через несколько десятков тысяч лет оболочка распадётся и останется только очень горячая и плотная звезда, которая постепенно остывает. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Звезда превращается в белый карлик. Постепенно остывая они превращаются в невидимые чёрные карлики . Чёрные карлики – это очень плотные и холодные звёзды, размером чуть больше Земли, но имеющие массу сравнимую с массой солнца. Процесс остывания белых карликов длится несколько сотен миллионов лет.
Звезды более массивные, нежели Солнце (от 1,2 до 2,5 солнечной массы), ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза - углерода, затем кремния, магния - и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо - это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.
Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени - некоторые теоретики полагают, что на это уходят считанные секунды, - свободные на протяжении всей предыдущей эволюции звезды электроны буквально растворяются в протонах ядер железа, всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой оказывается, выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра - и звезда буквально взрывается в ослепительной вспышке сверхновой звезды. За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.
Существует несколько гипотез о причине взрывов звёзд (сверхновых), однако общепризнанной теории пока нет. Есть предположение, что это происходит из-за слишком быстрого спада внутренних слоёв звезды к центру. Звезда быстро сжимается до катастрофически маленького размера порядка 10км, а плотность её в таком состоянии составляет 10 17 кг/м 3 , что близко к плотности атомного ядра. Эта звезда состоит из нейтронов (при этом электроны, как бы вдавливаются в протоны), именно поэтому она называется « нейтронной» . Её начальная температура около миллиарда кельвинов, но в дальнейшем она будет быстро остывать.
Эта звезда из-за её маленького размера и быстрого остывания долгое время считалась невозможной для наблюдения. Но через некоторое время были обнаружены пульсары. Эти пульсары и оказались нейтронными звёздами. Названы они так из-за кратковременного излучения радиоимпульсов. Т.е. звезда как бы «мигает». Это открытие было сделано совершенно случайно и не так давно, а именно в 1967 году. Эти периодичные импульсы обусловлены тем, что при очень быстром вращении мимо нашего взгляда постоянно мелькает конус магнитной оси, которая образует угол с осью вращения.
Пульсар может быть обнаружен только для нас в условиях ориентирования магнитной оси, а это примерно 5% из их общего количества. Часть пульсаров не находится в радио туманностях, так как туманности сравнительно быстро рассеиваются. Через сотню тысяч лет эти туманности перестают быть видимыми, а возраст пульсаров исчисляется десятками миллионов лет.
Звезды с высокой массой 8-10 масс солнца, эволюционируют так же, как и со средней до момента формирования углеродно-кислородного ядра. Это ядро сжимается и становится вырожденным до того как загорится углерод, форсируя вспышку, известную как углеродная детонация – аналог гелиевой вспышки. Хотя в принципе углеродная детонация может привести к вспышке звезды как сверхновой, некоторые звезды могут пережить эту стадию, и не взорваться. При повышении температуры в ядре вырождение газа может сняться, после чего звезда продолжает эволюционировать как очень массивная звезда.
Очень массивные звезды, с массой более 10масс Солнца, настолько горячи, что гелий загорается в ядре до того, как звезда достигнет ветви красных гигантов. Загорание происходит еще тогда, когда эти звезды являются голубыми сверхгигантами и звезда продолжает монотонно эволюционировать в сторону покраснения; пока гелий горит в конвективном ядре, водород горит в слоевом источнике, обеспечивая большую часть светимости звезды. После исчерпания гелия в ядре температура там так высока, что углерод загорается до того, как газ станет вырожденным и углеродное горение включается постепенно без взрывных процессов. Загорание происходит до того, как звезда достигнет асимптотической ветви гигантов. Во все время горения углерода в ядре происходит отток энергии из ядра за счет нейтринного охлаждения, и основным источником поверхностной светимости является горение водорода и гелия в слоевых источниках. Эти звезды продолжают вырабатывать все более и более тяжелые элементы вплоть до железа, после чего ядро коллапсирует, образуя нейтронную звезду или черную дыру (в зависимости от массы ядра), а внешние слои разлетаются, что выглядит как взрыв сверхновой II типа.
Из всего выше сказанного видно, что финальная стадия эволюции звезды зависит от её массы, но при этом необходимо ещё учитывать неизбежную ею потерю этой самой массы и вращение
(см. рис.№3)

3. Звездные скопления и ассоциации

Звездное скопление – группа звезд, расположенных в пространстве недалеко друг от друга, связанных общим происхождением и взаимным тяготением.
По современным данным, не менее 70% звезд Галактики входят в состав двойных и кратных систем, а одиночные звезды (как, например, наше Солнце) – это, скорее, исключение из правил. Но нередко звезды собираются и в более многочисленные «коллективы» – звездные скопления. Все входящие в скопление звёзды находятся от нас на одном расстоянии (с точностью до размеров скопления) и имеют примерно одинаковый возраст и химический состав. Но в то же время они находятся на разных стадиях эволюции (определяемой начальной массой каждой звезды), что делает их удобным объектом для проверки теорий происхождения и эволюции звезд. Различаются два вида звездных скоплений: шаровые и рассеянные. Первоначально такое разделение было принято по внешнему виду, но по мере дальнейшего изучения стало ясно, что шаровые и рассеянные скопления не похожи буквально во всем – по возрасту, звездному составу, характеру движения и т.д.

Шаровые звездные скопления насчитывают в своем составе от десятков тысяч до миллионов звезд. Для этого типа скоплений характерна правильная сферическая или несколько сплюснутая форма (которая, по-видимому, является признаком осевого вращения скопления). Но известны и бедные звездами скопления, по внешнему виду неотличимые от рассеянных (например, NGC 5053), и отнесенные к шаровым по характерным особенностям диаграммы «спектр-светимость». Двум самым ярким шаровым скоплениям присвоены обозначения омега Центавра и 47 Тукана как обычным звездам, поскольку благодаря значительному видимому блеску, они хорошо видны невооруженным глазом, но только в южных странах. А в средних широтах северного полушария для невооруженного глаза доступны, хотя и с трудом, только два – в созвездиях Стрельца и Геркулеса. (см. рис.№4)
Шаровых скоплений в Галактике в настоящее время известно около 150, но очевидно, что это только небольшая часть из существующих на самом деле (полное их число оценивается примерно в 400-600). Их распределение по небесной сфере неравномерное - они сильно концентрируются к галактическому центру, образуя вокруг него протяженное гало. Примерно половина из них расположена не дальше 30 градусов от видимого центра Галактики (в Стрельце), т.е. в области, площадь которой составляет лишь на 6% от всей площади небесной сферы. Такое распределение является следствием особенностей обращения шаровых скоплений вокруг центра Галактики, характерное для объектов сферической подсистемы - по сильно вытянутым орбитам. Один раз за период (10 8 -10 9 лет) шаровое скопление проходит через плотные центральные области Галактики и её диск, что способствует "выметанию" межзвездного газа из скопления (наблюдения подтверждают, что газа в этих скоплениях очень мало). Некоторые шаровые скопления находятся так далеко от центра Галактики, что их можно отнести к межгалактическим.
Диаграмма "спектр-светимость" у шаровых скоплений имеет характерную форму из-за отсутствия массивных звезд на ветви главной последовательности. Это свидетельствует о значительном возрасте шаровых скоплений (10-12 млрд. лет, т.е. они, формировались одновременно с образованием самой Галактики) - за такое время запасы водорода исчерпываются у звезд с массой, близкой к солнечной, и они покидают главную последовательность (и чем больше начальная масса звезды - тем быстрее), образуя ветвь субгигантов и гигантов. Поэтому в шаровых скоплениях самыми яркими звездами являются красные гиганты. Кроме того, в них наблюдаются переменные звезды (особенно часто - типа RR Лиры), а также - конечные продукты эволюции массивных звезд, проявляющие себя в виде рентгеновских источников разных типов. Но, в общем, в шаровых скоплениях двойные звезды встречаются редко. Следует отметить, что в других галактиках (например, в Магеллановых Облаках) найдены типичные по внешнему виду шаровые скопления, но со звездным составом небольшого возраста, и поэтому такие объекты считаются молодыми шаровыми скоплениями. Еще одна особенность шаровых скоплений - пониженное содержание тяжелых (тяжелее гелия) элементов в атмосферах входящих в них звезд. По сравнению с их содержанием в Солнце звезды шаровых скоплений обеднены этими элементами в 5-10 раз, а в некоторых скоплениях - до 200 раз. Эта особенность характерна для объектов сферической составляющей Галактики и также связана с большим возрастом скоплений - их звезды формировались из первичного газа, в то время как Солнце было образовано значительно позже и содержит в себе тяжелые элементы, образованные ранее проэволюционировавшими звездами.

Рассеянные звездные скопления содержат относительно немного звезд - от нескольких десятков до нескольких тысяч, и ни о какой правильной форме здесь, как правило, уже речи не идет. Самым известным рассеянным скоплением являются Плеяды, видимые в созвездии Тельца. В том же созвездии находится еще одно скопление - Гиады - группа слабых звезд вокруг яркого Альдебарана.
Рассеянных звездных скоплений известно около 1200, но считается, что их в Галактике их гораздо больше (порядка 20 тысяч). Они также распределены по небесной сфере неравномерно, но, в отличие от шаровых скоплений, сильно концентрируются к плоскости Галактики, поэтому практически все скопления этого типа видны вблизи Млечного Пути, и в основном удалены не более 2 кпк от Солнца (см.рис.№5). Этим фактом объясняется, почему наблюдается столь малая доля из общего количества скоплений - многие из них слишком далеки и теряются на фоне высокой звездной плотности Млечного Пути, или скрыты поглощающими свет газово-пылевыми облаками, также сосредоточенными в галактической плоскости. Как и другие объекты диска Галактики, рассеянные скопления обращаются вокруг галактического центра по орбитам, близким к круговым. Диаметры рассеянных скоплений от 1.5 пк до 15-20 пк, а концентрация звезд составляет от 1 до 80 на 1 пк 3 . Как правило, скопления состоят из относительно плотного ядра и более разряженной кроны. Среди рассеянных скоплений известны двойные и кратные, т.е. группы, характеризуемые их пространственной близостью и сходными собственными движениями и лучевыми скоростями.
Главное отличие рассеянных скоплений от шаровых - большое разнообразие диаграмм "спектр-светимость" у первых, вызванное различиями их возрастов. Самым молодым скоплениям - около 1 млн. лет, самым старым - 5-10 млрд. Поэтому и звездный состав рассеянных скоплений отличается разнообразием - в них встречаются голубые и красные сверхгиганты, гиганты, переменные различных типов - вспыхивающие, цефеиды и т.д. Химический состав звезд, входящих в рассеянные скопления, достаточно однороден, и в среднем содержание тяжелых элементов близко к солнечному, что типично для объектов диска Галактики.
Другая особенность рассеянных скоплений - что они нередко бывают видны совместно с газовопылевой туманностью - остатком облака, из которого звезды этого скопления когда-то образовались. Звезды могут разогревать или освещать "свою" туманность, делая ее видимой. Известные всем Плеяды (см. фото) тоже погружены в голубую холодную туманность. В галактике рассеянные скопления могут быть только там, где много газовых облаков. В спиральных галактиках, таких, как наша, такие места в изобилии встречаются в плоской составляющей галактики, и молодые скопления служат неплохими индикаторами спиральной структуры, поскольку за время, прошедшее с момента формирования, они не успевают удалиться от спиральных ветвей, в которых это формирование происходит.
и т.д.................


Невооруженным глазом люди могут увидеть примерно

6 тыс. звезд.




Звезды различны по:

Строению

Массе

Температуре (цвету)

Возрасту

Размерам

Светимости


Масса звезд

Достоверно определить массу звезды можно, только если она является компонентом двойной звезды. В этом случае массу можно вычислить, используя обобщённый третий закон Кеплера. Но даже при этом оценка погрешности составляет от 20 % до 60 % и в значительной степени зависит от погрешности определения расстояния до звезды. Во всех прочих случаях приходится определять массу косвенно, например, из зависимости масса - светимость


Цвет и температура звезд

Легко заметить, что звезды имеют различные цвета - одни белые, другие желтые, третьи красные и т. п. Белый цвет имеют, например, Сириус и Вега, желтый - Капелла, красный - Бетельгейзе и Антарес. Звезды различных цветов имеют различные спектры и различные температуры. Подобно накаливаемому куску железа, белые звезды более горячие, а красные - менее.

Арктур

Ригель

Антарес



Светимость звезд

Звезды, как и Солнце, излучают энергию в диапазоне всех длин волн электромагнитных колебаний. Вы знаете, что светимость (L) характеризует общую мощность излучения звезды и представляет одну из важнейших ее характеристик. Светимость пропорциональна площади поверхности (фотосферы) звезды (или квадрату радиуса R) и четвертой степени эффективной темпера туры фотосферы (Т), т. е.

L = 4 π R 2 о T 4


  • Исаак Ньютон (1643-1727) в 1665г. разложил свет в спектр и объяснил его природу. Уильям Волластон в 1802г. наблюдал темные линии в солнечном спектре, а в 1814г. их независимо обнаружил и подробно описал Йозеф фон ФРАУНГОФЕР (1787-1826). Выделено 754 линии в солнечном спектре.


  • Распределение цветов в спектре = O B A F G K M = запомнить можно, к примеру, по тексту:

Один бритый англичанин финики жевал как морковь.


  • от 380 до 470 нм имеют фиолетовый и синий цвет.
  • от 470 до 500 нм - сине-зеленый.
  • от 500 до 560 нм - зеленый.
  • от 560 до 590 нм - желто-оранжевый.
  • от 590 до 760 нм - красный.

  • Сверхгиганты
  • Гиганты
  • Карлики

это звезды в сотни раз больше нашего Солнца.

Звезда Бетельгейзе (Орион) превышает радиус Солнца в 400 раз.


Находится в созвездии Орион,

превышает радиус Солнца в 400 раз.




в десятки раз больше Солнца

Регул (Лев), Альдебаран (Телец) – в 36 раз больше Солнца.


это звезды по размерам как наше Солнце или меньше его

  • Белый карлик Лейтена
  • Звезда Вольф 457








  • Переменные звезды изменяют свой блеск.
  • Бывают также и двойные - две близко расположенные звезды, связанные взаимным притяжением.




  • Эта звезда находится в созвездии Большого Пса
  • Сириус можно наблюдать из любого региона Земли, за исключением самых северных её областей.
  • Сириус удалён на 8,6 световых лет от Солнечной системы и является одной из ближайших к нам звёзд.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

    Понятие эволюции звезд. Изменение характеристик, внутреннего строения и химического состава звезд со временем. Выделение гравитационной энергии. Образование звезд, стадия гравитационного сжатия. Эволюция на основе ядерных реакций. Взрывы сверхновых.

    контрольная работа , добавлен 09.02.2009

    Понятие и виды двойных звезд, измерение их массы с помощью законов Кеплера. Возникновение вспышки в результате встречи потоков вещества, устремляющихся от звезд. Влияние сил тяготения на двойные звезды, характерные особенности рентгеновских пульсаров.

    презентация , добавлен 21.03.2012

    Из чего состоят звезды? Основные звездные характеристики. Светимость и расстояние до звезд. Спектры звезд. Температура и масса звезд. Откуда берется тепловая энергия звезды? Эволюция звезд. Химический состав звезд. Прогноз эволюции Солнца.

    контрольная работа , добавлен 23.04.2007

    Зарождение и эволюция звезды. Голубые сверхгиганты - мегазвезды массой между 140 и 280 массами Солнца. Красные и коричневые карлики. Черные дыры, причины их возникновения. Жизненный цикл Солнца. Влияние размера и массы звезд на длительность ее жизни.

    презентация , добавлен 18.04.2014

    Исследование основ спектральной классификации звезд. Изучение спектра распределения энергии излучения по частоте и по длинам волн. Определение основных свойств излучающего объекта. Температура и давление на поверхности звезд разных спектральных классов.

    реферат , добавлен 02.01.2017

    Основные этапы возникновения и развития звезд, их структура и элементы. Причины и гипотезы насчет взрывов звезд и образования сверхновых. Степень зависимости финальной стадии эволюции звезды от ее массы, предпосылки возникновения явления "черной дыры".

    реферат , добавлен 21.12.2009

    Источники энергии звезд. Гравитационное сжатие и термоядерный синтез. Ранние и поздние стадии эволюции звезд. Выход звезд из главной последовательности. Гравитационный коллапс и поздние стадии эволюции звезд. Особенности эволюции тесных двойных систем.

    курсовая работа , добавлен 24.06.2008



Что еще почитать